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1 Introduction

Background

The United States Army is responsible for managing over 12 million acres of
land.  The Army’s land management objective is to maintain realistic military
training and testing environments while promoting land stewardship.  To ac-
complish this objective, the U.S. Army Land Condition Trend Analysis (LCTA)
program was developed at the U.S. Army Construction Engineering Research
Laboratory (CERL) under the sponsorship of the former U.S. Army Engineering
and Housing Support Center (USAEHSC) as a means to inventory and monitor
natural resources on military installations.  LCTA uses standard methods to
collect, analyze, and report natural resources data (Diersing, Shaw, and Tazik
1992) and is the Army’s standard for land inventory and monitoring (Technical
Note [TN] 420-74-3).  Over 50 military installations and training areas in the
United States and Germany have begun or plan to implement LCTA.  LCTA data
sets currently exist for more than 40 installations and contain 1 to 10 years of
monitoring data.  Lands inventoried as part of the LCTA program include Army
Materiel Command (AMC), Forces Command (FORSCOM), Training and Doc-
trine Command (TRADOC), and National Guard Bureau installations.  Over 75
percent of the Army’s land base is represented by LCTA data (Shaw and Kowal-
ski 1996).

An informal review of installation ITAM personnel indicated an interest in esti-
mating plant diversity using LCTA data and modeling changes in plant diversity
that result from alternative land uses.

Objectives

The objective of this project was to develop and test methodology to model
changes in plant diversity using standard data from the U.S. Army’s Land Con-
dition Trend Analysis (LCTA) program.  Specifically, stochastic models (those in-
volving random variables) of plant diversity were to be developed using data
from the White Sands Missile Range, New Mexico, LCTA program.
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Approach

A literature survey was conducted to identify methods of characterizing and
modeling plant diversity.  Based on results of the literature review, modeling
techniques were selected to model plant diversity.  Land Condition Trend Analy-
sis data from the White Sands Missile Range, New Mexico, was then used to de-
velop stochastic plant diversity models for selected plant communities.

Scope

The modeling techniques described in this report are applicable to any military
installation collecting LCTA data.  The specific model documented is only appli-
cable to White Sands Missile Range.

Mode of Technology Transfer

The information in this report will be provided to Army ITAM personnel respon-
sible for using LCTA data.  The information will also be provided to organiza-
tions responsible for developing and refining natural resources conservation
methodologies through hard copy reports and through the CERL web site.

This study is part of a larger research effort to develop and field LCTA-related
data applications.  Models and analysis techniques described in this report are
being incorporated into other modeling efforts and systems.
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2 Ecological Diversity and its
Measurement

Although the study of ecological diversity is only about 30 years old, it has been
extensively represented in the literature during that time.  There are three rea-
sons ecologists are so interested in this topic.  First, diversity is one of the cen-
tral themes in ecology.  Ecology is the scientific study of the distribution and
abundance of organisms and the interrelationship between the organisms and
their surroundings.  Diversity studies, which address the variety and abundance
of organisms, represent a major field of study in ecology.  Second, diversity is of-
ten seen as an indicator of the health of an ecosystem.  Studies have shown that
pollution and disturbance reduce the richness and variety of the natural ecologi-
cal communities.  The loss of natural habitat and species extinction around the
world have served to focus international attention on the issue of diversity.
Third, considerable debate surrounds the measurement of diversity.  On the sur-
face, biodiversity seems to be a straightforward concept.  Most people have an
intuitive sense of the word.  They would acknowledge that tropical rain forests
harbor more species than temperate woodlands and are therefore more biologi-
cally diverse.  However, the more we look at diversity, the less clearly defined it
appears to be because diversity can be measured in so many different ways.  A
more in-depth study of diversity could reveal new and unexpected relationships
between species and ultimately lead to a better understanding of the mecha-
nisms involved.  The study of ecological diversity over the past 30 years has
raised three main questions:  what is diversity, how is it measured, and what is
its value in practice?

The Concept of Diversity and its Measurements

Diversity is one property of a biological community and consists of two compo-
nents:  variety and abundance.  A large number of diversity measures have been
devised by interpreting the relationship between variety and abundance in dif-
ferent ways.  Magurran (1988) divides the measurement of species diversity into
three main categories.  First are the species richness indices.  These indices are
essentially measures of the number of species in an ecosystem.  The second cate-
gory of diversity measures includes those models that describe the distribution of
species abundance.  The third category is the diversity indices based on the rela-
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tive species abundance.  These indices, like the Shannon index and the Simpson
index, consolidate species richness and evenness into a single figure.

Indices of Species Richness

Species richness is defined as the number of species or species density in the
community.  If a complete catalogue of species in a community can be obtained (it
is possible for small communities), the number of species provides some measure
of understanding diversity.  Because most natural communities are very large,
however, only a limited number of species can be counted and identified by sam-
pling.  Therefore, species density (defined as the number of species per unit area,
biomass, or number of individuals), is commonly used as species richness (Hurl-
bert 1971; Homer 1976; Kempton and Wedderburn 1979; Kershaw and Loony
1985).  Species density estimated by sampling varies with sample size and sam-
ple distribution.  To cope with this problem Sander (1968) devised the technique
of Rarefaction for calculating the number of species expected for all samples with
standard sample size.  Hurlbert (1971) improved Sanders’ Rarefaction to produce
an unbiased estimate of the number of species.  Instead of using the number of
species or the species density, others have used some simple indices derived from
a combination of the number of species (S) and the number of total individuals
(N) to represent species richness.  Such indices include Margalef’s index (Clifford
and Stephenson 1975) and Menhinck’s index (Whittaker 1970).  The Margalef
index (DMg) and Menhinck index (DMn) are, respectively, defined by:

(1a) DMg = 
S

N
�1

ln

(1b) DMn = 
S
N

Species Abundance Models

Species richness may be intuitive and easy to calculate but it does not contain
any information of the relative abundance or distribution of species.  In fact, spe-
cies distributions are often more meaningful in explaining natural communities.
Kempton and Wedderburn (1979) observe that a distribution of species is often a
more sensitive measure of environmental disturbance than species richness
alone.  In an early study, Fisher, Corbet, and Williams (1943) found that patterns
occur in species distribution.  It is very rare to have an equal number of indi-
viduals for all species.  Instead, a few species would be very abundant, some
would have a medium abundance, while most species have only a few individu-
als.  This observation led to the development of species abundance models.
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Pielou (1975) developed six models of species abundance.  They are the niche
preemption model, broken stick model, overlapping niche model, truncated nega-
tive binomial distribution, log-series distribution, and log-normal distribution.
In a monograph of stochastic abundance models, Engen (1978) lists nine mathe-
matical distributions related to species abundance.  These are the gamma distri-
bution, first kind beta distribution, second kind beta distribution, log-normal dis-
tribution, Dirichlet distribution, negative binomial distribution, logarithmic
series distribution, negative binomial beta distribution, and Poisson log-normal
distribution.  A number of other species abundance models also appear in litera-
ture (Zipf 1965; Mandelbrot 1977; Gray 1988).  In practice, four main models
(Magurran 1988) characterize species diversity:  the log-normal distribution,
geometric series, logarithmic series, and MacArthur’s broken stick model.

The geometric series is based on the hypothesis that every species ranked from
the most to the least abundant take the same proportion (k) of the remainder.
The ranked abundance list is k, k(1-k), k(1-k)2, ... k(1-k)S-2, (1-k)S-1.  May (1975)
gave the probability distribution of such ranked list, F(x), which is defined as the
probability that a randomly chosen species has size less than x.

C is a constant.  Geometric series pattern of species abundance is found primar-
ily in species-poor environments or in the very early stages of a succession (Whit-
taker 1965, 1970, 1972).

Fisher, Corbet, and Williams (1943) derived a log-series model to describe the
species abundance of Malayan Lepidoptera.  This log-series model represented
the first attempt to describe mathematically the relationship between the num-
ber of species and the number of individuals in those species.  In the log-series,
the expected frequency of a species with abundance x is given by:

(3)  fx = 
ab
x

x

,  for x = 1, 2, ...

The variable b (0 < b < 1) is a constant that is dependent on the sample size, and
a (a > 0) is a constant determined by the characteristics of the community.  When
the abundance of each species is plotted on a logarithmic scale in rank, the log-
series approximates a straight line with a slope of -a (Taylor, Kempton, and
Woiwod 1976).  The log-series provides a statistical satisfactory description of
samples from a wide range of communities (Williams 1964; Kempton and Taylor

)1ln(
)ln(-CF(x)           )2(
k

x
−

=
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1974; Gray 1978).  It can be used for small, stressed, or pioneer communities
(May 1975; Whittaker 1965), and also for “neutral” unstressed communities
(Caswell 1976).

Preston (1948, 1962) observed that in many samples middle-ranked species were
relatively numerous, and there were fewer rare species than the log-series dis-
tribution predicted.  By the log transformation of number of individuals, Preston
found that the number of species always distributed with a truncated normal
distribution.  In a log-normal distribution, the probability density function is:

The expected size of species is calculated by:

The log-normal distribution rises from the statistical properties of large numbers
and as a consequence of the Central Limit Theorem (May 1975).  Thus, it is con-
sidered to be the descriptor of large and mature natural communities (May 1975;
Whittaker 1972; Gray 1978; Preston 1980; Magurran 1988).

MacArthur (1957) first proposed the broken stick model.  In this model, the re-
source is likened to a stick broken randomly and simultaneously into S distinct
segments.  The lengths of the segments represent the “sizes” of the species.  Ac-
cording to the model, the expected size of the i-th species, xi, is:

(6) E(xi) = 
1
S k i

S

�

�
1
k

The broken stick model reflects a much more equitable state of affairs than those
suggested by the log-normal, log-series, and geometric series.  It has good fits for
the communities with a few species and relative high evenness between species
(May 1974; Pielou 1975).

Diversity Indices

The third kind of diversity measures include those indices based on the propor-
tional abundance of species.  Although species abundance distributions provide
the fullest description of diversity data, there are times when a single diversity

�
�
�

� −−
= 2

2

2
)(ln

exp
*2

1f(x)           )4(
σσ

mx
mx

.
2

expE(S)           (5) �
�
�

� += σm
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index is required.  When communities do not fit one model and it is desired to
compare them by means of diversity, indices based on the proportional abun-
dance of species provide a solution to this problem.  The most commonly used
indices are the Shannon index and Simpson index.

The Shannon index is defined as:

(7) H’ = -�
=

S

i 1

(pi lnpi)

The parameter pi is the proportion of community members in the i-th class.
Shannon originally proposed this diversity index as a measure of the information
content of a code.  The Shannon index assumes that individuals are randomly
sampled from an “infinitely large” population and all species are represented in
the sample.

Using the fact that the probability of drawing two successive individuals be-
longing to the same species in a random sampling is p2

i, Simpson (1949) sug-
gested a statistic, D, that has the form of:

The parameter pi is the proportion of individuals in the i-th species and S is the
total number of species in the community.  This statistic measures a property
that is opposite to the diversity.  The diversity index corresponding to the statis-
tic D, the Simpson index, is then given by:

(9) H = -lnD

The Shannon index and Simpson index are two special cases of a more general
class of functions (H) used in mathematical theory of information (Pielou 1975).

(11) )pln(p)H(H
11

1 lim
=→

−==
S

i
iiα

α
     (Shannon index)

(12) )pln(HH
1

2
22

=
= −==

S

i
iα                 (Simpson index)

α

α

α −
= =

1

)pln(
H           )10(

S

1i
i

=

=
S

1i

2
iP          )8( D
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Using the concept of rarity, Dennis and Patil (1979) find a class of diversity func-
tions that also leads to the Shannon index and Simpson index.

(13) Rarity = R(pi) = β-1[1- b
ip ]

(14) Diversity = ∆β = 
=

S

i 1
ii )R(pp

(15) ∆-1 = ∆β=-1 = S-1                (Species richness index)

(16) ∆0 = )plnp()(
10

lim
=→

−=∆
S

i
iiβ

β
(Shannon index)

(17)
=

= −=∆=∆
S

i
i

1

2
11 p1β (Simpson index)

There are other diversity indices such as the McIntosh index and Berger-Parker
index.  McIntosh (1967) found that the Euclidean distance of the assemblage
from the origin could be used as a measure of diversity.  Berger and Parker
(1970) use the proportional importance of the most abundant spices as the diver-
sity measure.

New Models of Diversity

Hughes (1984, 1986) has completed research on the diversity measures with a
dynamics model.  In this dynamics model, the abundance (n) of the i-th species at
time t+1 is calculated from the expression:

(18) nt
i
�1 = S[nt

i  + R(1 + Znt
i )

K N
K

t�

]

The variable S is the survival parameter, R is the recruit parameter, Z is the ag-
gregation parameter, and Nt is the number of total individuals.  This dynamics
model simulates the development and the progression of a theoretical commu-
nity through time.  It defines a “community” with a variable number of species
and species abundance.

Diversity itself is also divided into two types:  species diversity and spatial diver-
sity (structure and habitat diversity).  The diversity discussed above is mainly
concerned with species diversity.  Although species diversity is the more impor-
tant, structure and habitat diversity has special use in ecology.  Habitat diversity
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has been used as an important component of wildlife conservation evaluation
(Fuller and Langslow 1986; Pearsall, Durham, and Eagar 1986; Usher 1986).
MacArthur and MacArthur (1961) found that the structural diversity of a tem-
perate woodland in North America was a much better predictor of bird diversity
than the plant species diversity.  Southwood, Brown, and Reader (1979) reported
finding a close relationship between plant spatial diversity and insect diversity
in woodland succession.  Elton and Liller (1954) divided habitat diversity into
four levels.  The first level is the major habitat system (e.g., terrestrial or
aquatic).  The major habitat system is then divided into formation type (e.g.,
woodland or open land).  When categorizing the formation type, the presence of
vertical layers (e.g., ground flora, shrub, high canopy) is recorded.  These vertical
layers comprise the third level of habitat diversity.  A fourth layer of qualifiers
(e.g., conifer, deciduous) then describes them further.

Different situations and studies may have different habitat classification
schemes.  Once the structure and habitat diversity is defined, the next question
is how to measure the structure and habitat diversity.  Methods for measuring
species diversity can also be used for measuring structure and habitat diversity
(Magurran 1988).  A rather different approach, differentiation diversity, is re-
quired when we wish to ascertain how species numbers and identifiers differ be-
tween communities or along gradients (Magurran 1988).

The true value of studying diversity is in its application.  It is believed that di-
versity is a good indicator of the well-being of an ecosystem (Magurran 1988).
Diversity measures have potential applications to two main ideas.  First, is the
idea of natural resources conservation, which is underpinned by the notion that
species-rich communities are better than species-poor ones.  Second is the idea of
environmental monitoring, which assumes that the adverse effects of pollution or
disturbance will be reflected in a reduction in diversity (or by a change in the
shape of the species abundance distribution [Magurran 1988]).  Many research-
ers (Bechtel and Copeland 1970; Schafer 1973; Rose 1978; Gray and Mirza 1979;
Yapp 1979; Wu 1982; Usher 1986; Tomascik and Sander 1987) have shown suc-
cessful applications of diversity measures.

It should be noted, however, that all of the previously mentioned diversity meas-
ures have some limitations.  Species richness gives only the number of species or
species density.  Diversity indices based on the proportional abundance of species
represent the number of species and their relative abundance as a single figure.
However, they lose information about relative species abundance.  Species abun-
dance models give the fullest description of species distribution.  Once the spe-
cies distribution of a community is determined, diversity indices can be calcu-
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lated from the distribution of species.  However, species abundance models also
have problems in application.

Although there are many mathematical distribution models related to species
abundance, two models have focused on the limited distributions of species:  the
log-normal and the log-series models.  The log-normal model is said to fit a wide
variety of communities that are stable and contain a large number of species,
while the log-series model is said to be applicable to small, stressed, or unstable
communities.  Although the log-normal and the log-series models have been
widely used and have good theoretical explanations, there are three problems
with using these models.  First, the majority of real communities may not be
satisfactorily described by either the log-normal or the log-series.  It is very rare
to find a community with the exact log-normal distribution or log-series distribu-
tion.  Second, either the log-normal or the log-series distribution may result as
an artifact of the sampling procedure.  Combining smaller, separate samples
may produce a log-normal distribution, even if the individual samples each show
a log-series distribution.  On the other hand, a small sample taken from a log-
normal community may produce a distribution resembling a log-series.  Third,
even if the log-normal or the log-series distributions fit the community very well
by the ‘goodness of fit’ test, the fitted log-normal or the log-series model does not
provide a good estimation of the abundance of the most prevalent species or the
least prevalent species.  This is because the most abundant and least abundant
species are represented at the tails of the distribution.  Most biodiversity meas-
ures like the Shannon index and the Simpson index depend on a large number of
rare species.  Also, the quality of a community is mainly determined by the most
abundant species.  Therefore, using a theoretic distribution in biodiversity
analysis causes a precision problem.

Although the problems discussed here are critical in a diversity study, they have
not been solved yet.  This study intends to explore a new method of measuring
diversity and fill the gap in the recent diversity study.  A new stochastic dynam-
ics model will be developed to model both the deterministic population growth
and population fluctuations.  This model will use a variable number of species
and species abundance to calculate any kind of diversity indices.  Because both
the dynamic changes and stochastic fluctuations are included in the new model,
the stochastic dynamics model has the potential for extensive use in natural re-
sources management and environmental monitoring.  Future applications of
these stochastic dynamics models include (1) providing standard diversity meas-
ures, (2) monitoring the development of plant communities in terms of species
diversity and structure diversity, (3) testing the significance of the influence of
human activities on plant communities, and (4) estimating rehabilitation time
for a disturbed plant community.



CERL TR 00-5 17

3 Stochastic Dynamic Models

Although the real mechanisms for the development of a plant community are
very complicated, mathematical models can replace the complex biological reality
with some idealized hypothetical systems.  In fact, many simplified mathemati-
cal models can interpret complex consequences and predict the behavior of elabo-
rate natural systems.  In this report, we will discuss several population dynam-
ics models with environmental stochasticity and demographic stochasticity.

A stochastic dynamics model can be derived by manipulating a deterministic
model to include demographic stochasticity and environmental stochasticity.  A
deterministic model describes the mechanisms controlling the population growth
and decay.  The values of the parameters in the deterministic model are assumed
to be known.  Whenever the initial conditions are given, the deterministic models
provide exact predictions of future populations.  In the real world, however, few
communities have the population dynamics described by deterministic models.
Instead, populations of most natural communities have fluctuating growth be-
cause of demographic and environmental stochasticity (or noise).

Turelli (1986) provides definitions of environmental stochasticity and demo-
graphic stochasticity.  Demographic stochasticity (or within-individual variabil-
ity) is the variation of individuals who appear to be identical but have different
life lengths and produce different numbers of offspring.  Integer-valued stochas-
tic models are typically used to investigate the consequences of the demographic
stochasticity.  Environmental factors vary unpredictably through time in ways
that affect all individuals.  This variation is called environmental stochasticity.
Most analyses of the consequences of environmental stochasticity begin by add-
ing a noise term in the deterministic model (May 1973; Capocelli and Ricciardi
1974; Tuckwell 1974; Goel and Richter-Dyn 1974; Turelli 1977).  This produces
stochastic difference and differential equations with continuous ranges.

In this paper, we first introduce a dynamics model of population growth.  This
model derives birth and death rates as they relate to population growth from the
relationships among plants.  It also derives these rates from the relationship
between plants and the environment.  The model will serve as the deterministic
part of the stochastic model.  Next, we present some well-known stochastic
models such as birth and death processes and a diffusion process.  In this part,
we demonstrate different methods to solve a variety of stochastic differential
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equations.  Next, we will show how to incorporate both demographic noise and
environmental noise into a single model that considers the joint effects of
demographic and environmental stochasticity.  Finally, we will apply the model
to predict the dynamics of the understory in a bottomland forest.

A Simulation Model of Population Dynamics

The dynamics of the population growth of a community can be mathematically
described if the functional behavior of the rate of growth is known.  The litera-
ture contains many different representations of the growth rate (Nisbet and
Gurney 1982; Streifer 1974; Hallam 1986).  Most of these representations have
two basic factors in common:  survivorship and recruitment.  Survivorship can be
expressed by the percentage of individuals that survive from one time period to
the next.  Recruitment is the addition of new individuals to the population by
immigrations and births.  For plant communities, the emigration can be ne-
glected because plants usually do not emigrate once they become established in
the community.

A Discrete Model of Plant Population Dynamics

Consider a 1-hectare plant community consisting of 10,000 space units (i.e., 1
space unit = 1 m2).  Each individual of i-th species occupies Ai space unit.  Thus,
the space occupied by all plants at time t is At = Σxt

i*Ai, where xt
i is the number

of individuals of the i-th species at time t.

The change in the number of individuals of the i-th species from time t to time
t+1 depends on the number present at time t, the number recruited (immigration
and birth), and the number of individuals that survive.  This relationship is ex-
pressed as:

(1)∗ xt
i
�1 = si (xt

i + ri)

where xt
i
�1 and xt

i are the number of individuals of the i-th species at time t+1

and t, respectively, si is the net survivorship, and ri is the net recruitment.

                                               
∗ Equations in each chapter begin with (1).
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Competition, insects and disease, senescence, and occasional catastrophe (natu-
ral catastrophe and human disturbance) are the most important sources of mor-
tality for terrestrial plants.  Mortality (or survivorship) is incorporated into the
model in three ways.  First, the inter-specific survive rate (S) is included in the
model as a given number ranging from 0 to 1.  The inter-specific survival rate of
the i-th species (Si) represents the intrinsic survivability of the i-th species.  Sec-
ond, to account for the mortality due to a catastrophe, the inter-specific survival
rate is multiplied by the catastrophe index C (0<C<1).  We assume that all spe-
cies suffer from the catastrophe but their tolerances are different.  Third, the
risk of mortality from competitive interference is likely to increase with an in-
crease in the community density.  In this model we use a discrete-time analog of
the Lotka-Volterra competition equation which is expressed as:

(2) Qi = gi( i

j
tij

K
xa

S )

where Ki is the maximum number of individuals of the i-th species and aij are

the competition coefficients.  We assume that for each i, g(x)>0,  and g(x)'<0 for
x>0 (i.e., g(x) is a positive decreasing function).  Thus, the survivorship compo-
nent of equation (1) is now written as:

(3) si = 
S C

Q

i

i
*

� �

The number of individuals recruited depends on the inter-specific recruitment
potential (Ri), the availability of space (At/A) at time t and the immigration (I).
The inter-specific recruitment rate represents the rate of addition of population
by birth.  As the community develops and as space becomes occupied, the poten-
tial for further recruitment is proportionally reduced.  Therefore, the inter-
specific recruitment potential (Ri) should be multiplied by a space constraint (V)
which is a function of the ratio of space occupied and total space, i.e., V = f(At/A).
The combined recruitment rate is:

(4) ri = (Ri xt
i + Ii)V

Putting si and ri in equation (1), we obtain the final version of the dynamics
model.

(5) xt
i
�1 = 

S C
Q

i

i

*
1�

 [xt
i + (Ri xt

i + Ii)V]
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This model produces a “community” with a variable number of species and vari-
able population, which can then be used to calculate diversity indices.

The Continuous Model of Plant Population Dynamics

When the population size of a community is large, a continuous model can ap-
proximate population growth.  Let i

dttx +  and xt
i respectively be the numbers of i-

th species at times t+dt and t.  The change in the number of individuals of the i-
th species from time t to time t+dt is:

(6) xt dt
i
�

 - xt
i = {xt

i[Ri S C
Q

i

i

*
1�

 V - (1-
S C

Q

i

i

*
1�

)] + 
S C

Q

i

i

*
1�

 Ii V}*dt

               = [xt
i(bi-di)+mi]*dt

Dividing dt on both sides of (6) and letting dt go to 0, we have the following dif-
ferential equation.

(7) 
d
dt

(xt
i) = xt

i(bi-di)+ mi

         = xt
i*hi + mi

where  bi =(Ri 
i

i

Q
CS

+1
*

 V) is the birth rate,  di =(1-
S C

Q

i

i

*
1�

 ) is the death rate, mi

is the net immigration rate and hi is the net growth rate.  The solution of equa-
tion (7) is an exponential growth function with immigration.

(8) xt
i = (xi

0 + 
m
r

)*exp(hit) - 
m
r

When h>0, immigration causes an exponential increase in population growth.
When h<0, immigration causes an exponential decrease in population growth,
and there is high competition in the community.  The new immigrants increase
the competition and speed up the decrease of population growth.  As in equation
(5), equation (8) also produces a “community” with a variable number of species
and variable population.
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Demographic Stochasticity

As discussed in the dynamics models, the birth rate, death rate, and immigration
rate are assumed to be constant.  In the natural world, however, this assumption
does not usually hold true.  Individuals of identical plant types may have differ-
ent life lengths and produce different numbers of offspring.  This variation
among the individuals is called demographic stochasticity.  There is vast litera-
ture on the modeling of demographic noise.  Turelli (1986) gives a very good
overview of demographic stochastic models.

In this paper we will use the birth and death processes to describe the demo-
graphic stochasticity.  The birth-death processes describe population dynamics
with biologically accurate, interpretable birth and death rates and are applicable
to individual numbers of every size.  First, we start with an ‘external birth’
model, the Poisson process of immigration.

The Poisson Model of Immigration

Suppose the chance of an event (immigration) in the small time interval (t, t+dt)
is λdt+o(dt), where the last term is a remainder term which becomes negligible
compared with dt as dt gets smaller, and may be consequently neglected in com-
parison with the first term.  This chance λdt is assumed to be independent of the
number of previous happenings, and, moreover, each event is assumed to be in-
dependent.  Therefore the chance of two events (or more) occurring in the time
interval (t, t+dt) is o(dt), and is also negligible.  Let the probability of r events
(and no more nor less) in the time interval (0,t) be pr .  Then we can mathemati-
cally represent the whole set or distribution of probabilities pr  (r=0, 1, 2, ...) by

the generating function in θ,

(9) Π(θ) = i = 0 prθi

As the pr  are dependent on t, we note that Π(θ) is also a function of t, and shall
write it more fully as Πt(θ).  Then by the rules of probability, as the increase in
the total number of events, during the further interval dt, is independent of the
previous total number occurring in the interval (0, t), it follows that

Πt+dt(θ) = Π t(θ){1-λdt+λθdt} or

(10) �

�t tP qlog( ( )  = λ(θ-1)

whence, as Π0(θ) = 1,



CERL TR 00-5 22

(11) Πt(θ) = exp[λt(θ-1)], and

(12)  pr  = (λt)r*exp(-λt)/r!

Equations (11) and (12) specify the Poisson distribution with mean m=λt.  When
λ is time-varying, the mean is obtained by the following equation:

(13) m = 
0

t

� λ(u)du

The Simple Birth and Death Process

We assume that the probability for any given individual to give birth in the time
interval (t, t+dt) is ldt while the probability of dying in that time interval is mdt.
Equivalently, denoting by dX(t, t+dt) the increment X(t+dt)-X(t) of the population
size in (t, t+dt) we can make the following assumptions:

(14a) P{dX(t, t+dt) = 1/X(t) = n} = lndt + o(dt)

(14b) P{dX(t, t+dt) =-1/X(t) = n} = mndt + o(dt)

(14c) P{|dX(t, t+dt)| > 1 / X(t) = n} = o(dt)

From (14) it follows

(15) p{dX(t,  t+dt) = 0/X(t) = n} = 1-(l+m)ndt + o(dt)

From (14) and (15) we easily obtain:

pn(t+dt) = pn(t) [1-(l+m)ndt] + pn-l(t)(n-1)ldt + pn+1(t)m(n+1)dt + o(dt)

or, the limit as dt approaches 0:

(16)
dp t

dt
n ( )

 = -n(l+m)pn(t) + l(n-l)pn-1 (t) + m(n+1)pn+1(t)

with the initial condition:

(17) pn(0)=
1
0
,
,
n j
n j
�

�

�

�

�
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Before showing how equation (16) can be solved to determine the functions pn(t),
let us calculate the mean population size E[X(t)] and its variance Var {X(t)} by a
straightforward procedure.  Use the definition:

(18) E[X(t)] = n = 0  npn(t)

and differentiate both sides with respect to t:

(19)
dt
d

E[X(t)] = n = 0  n
d
dt

pn(t)

=-n = 0 n2(λ+µ)pn(t)+λn = 0 n(n-1)pn-(t)+µn = 0 n(n+1)pn+1(t)

where the last equality follows from (16).  Setting n-1=n and n+1=n in the second
and third sums on the right-hand side (r.h.s.) of (19), respectively, after some
straightforward algebra we are led to the following differential equation:

(20)
d
dt

E[X(t)] = (λ+µ)E[X(t)]

On the other hand from (19) and (20) we obtain the initial condition

(21) E[X(0)] = j

From (20) and (21) we immediately get

(22) E[X(t) / X(0) =j] =j*exp[(λ-µ)t]

By a similar procedure an equation for

(23) Var {X(t)} = E[X2(t)] - {E[X(t)]}2

can be derived and solved with the initial condition

Var {X(0)} = 0

We have the following result:

(24) Var {X(t)/ X(0)= j} =

2j t, =

e (e -1),( - )t ( - )t

µ λ µ

λ µ
λ µ λ µλ µ λ µj( )+
−

≠
�
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Note that in the case λ≠µ this variance not only depends on the intrinsic “growth
rate” λ−µ but also on the sum λ+µ.  The sum λ+µ=R defines the noise strength,
called demographic noise (Nisbet and Gurney 1982).

Now we turn to the solution of equation (16).  We first introduce the monument
generating function, M(θ, t), defined as follows in terms of the pns:

(25) M(θ, t) = n = 0 eθnpn(t)

where p is a dummy variable.  Multiplying both sides of equation (16) by eθn and
summing over n from 0 to ∞, one can easily obtain:

(26)
�

�

M t
t
( , )�

 = [λ(eθ-1)+µ(e-θ-1)]
�

��

M t( , )�

with the initial condition

(27) M(θ, 0) = eθj

The general solution of equation (26) can be found by the method of characteris-
tics,

(28)

( )
( )

( )( )
( )

µλ
µλ

λ
λ
θλν
θµν

θ

θ

θ =
≠

�

�

�

�
�
�

�

−−
−−−

�
�

�
�

�

−
−

=
,
,

11
111

1,
1,

),( j

j

et
et

t
t

tM

where � �
� � �

�
� �

( , ) ( ) ( )

t e e
e

t
= −

−

−1

Now we define function F(s, t) as the probability generating function:

(29)  F(s, t) = n = 0 pn(t)s
n = M(log(s), t)

(30) ( )
( ) ( )

( )
( )( )

( )
µλ
µλ

λ
λ

αλλαµ
µαλαµ

=
≠

�

�

�

�
�
�

�

−−
−−−

�
�

�
�

�

−−−
−−−

=
,
,

11
111

1
1

, j

j

st
st

s
s

tsF

where α=e(λ-µ)t
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The meaning of λ-µ is intuitive.  It is the net rate of population change.  To un-
derstand the meaning of λ+µ we introduce the diffusion approximation.  We re-
write equation (16) as

(31)
dp t

dt
n ( )

 = -[λ(n)+µ(n)]pn(t)+λ(n-l)p
n-1

 (t)+µ(n+1)pn+1(t)

We use Taylor expansions to approximate the various functions of n±1 in (31).
This involves treating n as a continuous variable and reinterpreting pn(t) as a
probability density.  Discarding all terms in the Taylor expansions that are of
third or higher order, we have the approximate equation of (31),

(32) �

�

�

�

�

�
� � � �

p t
t n n n n

n n n p t n n p t( ) [( ( ) ( )) ( )] [( ( ) ( )) ( )]= − − + +1
2

2

2

With (32) it is easy to show that

(33) E(dn) = [λ(n) - µ(n)]dt

(34) E[(dn)2] = [λ(n)+µ(n)]dt

Equation (34) explains why we call λ+µ the strength of demographic noise.

Now we have established simple closed form expressions for the probability pn(t)
and calculated explicitly mean and variance of the population’s size.  All this al-
lows us to draw an accurate picture of the population’s time evolution.  In par-
ticular, we can easily get information about the extinction probability of the
population by taking the limit of (30) as s goes to 0.

(35) ( )

( )( )
( )

µλ
µλ

λ
λ

µλ
µ

µλ

µλ

=
≠

�

�

�

�
��

�

+

�
�

�
�

�

−
−

=
−

−

,
,

1

1

0 j

j

t

t

t
t

e
e

tp

Environmental Stochasticity

Environmental fluctuations inevitably produce fluctuations in population levels.
A general question is how species dynamics and interactions translate
environmental fluctuations into temporal and spatial patterns of population
abundance.  Because there is a lack of mathematical machinery available to
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analyze nonlinear multidimensional stochastic processes, environmental
fluctuations are incorporated into a deterministic model in a way that is
biologically meaningful yet mathematically tractable.  The most common way
used in the literature is to add a noise term in a differential or difference
equation (May 1973; Capocelli and Ricciardi 1974; Tuckwell 1974; Goel and
Richter-Dyn 1974; Turelli 1977).  Here we discuss the two most common types of
stochastic differential equations:  dx

dt h x k x t= +( ) ( ) ( )Λ  and dx h x dt k x dW= +( ) ( ) .

Stochastic Differential Equations (1)

 dx
dt h x k x t= +( ) ( ) ( )Λ

We first deduce the so-called kinetic equation from Markovian property.  The ki-
netic equation is the general form of many stochastic differential equations.
Consider a Markov process with a continuum of state values in continuous time.
Its transition probability density function (p.d.f.), ¦(x, t | x0, t0), satisfies the

Chapman-Kolmogrov equation (Bartlett 1966; Ross 1983; Bharucha-Reid 1960):

(36) ƒ(x, t|x0, t0) = dyƒ(x, t|y, τ)ƒ(y, τ|x0, t0)

with t>τ>t0 arbitrary instants and X(t)=x, X(τ)=y, X(t0)=x0.  Equation (36) is to be
looked at as a compatibility relation holding for any Markov process, but it is not
sufficient to determine the process’ transition p.d.f.  To accomplish this task, fur-
ther assumptions besides the Markov assumption are necessary.  First let us re-
write equation (36) in a differential form,

(37) ƒ(x, t+∆t|x0, t0)-ƒ(x, t|x0, t0) = dyƒ(x, t+∆t|y, t)ƒ(y, t|x0, t0)-ƒ(x, t|x0, t0)

Let us now consider an arbitrary function R(x) vanishing at the end points of the
state space sufficiently rapidly, together with its derivatives of all orders.  Multi-
plying both sides of (37) by R(x)/∆t and integrating over the state space, we ob-
tain:

(38)
= +

−

+ −dxR x

dxR x dyf x t x t

dxR x f x t x t

f x t t x t f x t x t
t

t

t

( )

( ) ( , , )

( ) ( , | , )

( , | , ) ( , | , )∆
∆

∆

∆

∆

0 0 0 0

1
0 0

1
0 0

t|y, t)f (y, t|

Substituting the Taylor expansion about the point y for R(x) in the first integral
on the right-hand side of equation (38):
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(39)
R x R y d R y

dy
n

x y
n

n

n

n

( ) ( ) ( ) ( )
!= +

=

∞
−

1

and taking the limit as ∆t goes to 0, we obtain:

(40)

= +

+

× − +

−

→

=

∞

→

→

dxR x dyR y f y t x t dxf x t t y t

dy f y t x t

dx x y f x t t y t

dxR x f x t x t

f
t

t
t

n
n

d R y
dy

t
t

n

t
t

n

n

( ) lim ( ) ( , | , ) ( , | , )

{ ( , | , )

lim ( ) ( , | , )}

lim ( ) ( , | , )

!
( )

∂
∂

∆
∆

∆
∆

∆
∆

∆

∆

0

1
0 0

1

1
0 0

0

1

0

1
0 0

or:

(41) =
=

∞

�dxR x dx f x t x t A x tf
t n

n

d R x
dx n
n

n( ) ( , | , ) ( , )!
( )∂

∂
1

1
0 0

having used the normalization condition:

(42) + =dxf x t t y t( , | , )∆ 1

and having set:

(43) A x t dy y x f y t t x tn
t

t
n( , ) ( ) ( , | , )lim= − +

→∆
∆ ∆

0

1 , (n=1, 2, ...)

The integration by parts of the r.h.s. of equation (41), in which the vanishing of
R(x) and its derivatives at the ends of integration interval is used, shows that:

(44)
= −

dy f y t x t A y t

dxR x A x t f x t x t

d R y
dy n

n
x n

n

n

n

n

( ) ( , | , ) ( , )

( ) ( ) [ ( , ) ( , | , )]

0 0

0 01 ∂
∂

Equation (41) thus yields:

(45) − =−

=

∞

�dxR x A x t f x t x tf
t n x n

n

n n

n( ){ [ ( , ) ( , | , )]}( )
!

∂
∂

∂
∂

1
0 0

1
0

Now due to the arbitrariness of the function R(x), the bracketed terms must be
identically zero, and we have our desired result:



CERL TR 00-5 28

(46) �

�

�

�

f x t x t
t n x n

n

n n

n A x t f x t x t( , | , ) ( )
! [ ( , ) ( , | , )]0 0 1

0 0
1

= −

=

∞

This is the kinetic equation holding under the sole assumption that the process
under consideration is Markovian.  The functions An(x, t) defined by (46) are
called infinitesimal moments of the process.

Consider a population growth model with a stochastic growth rate due to the en-
vironmental fluctuations:

(47) r = � r  + Λ(t)

where Λ(t) is a noise term due to the environmental stochasticity and � r  is a de-
terministic net growth rate.  Then we have a simple stochastic differential equa-
tion:

(48)
dx
dt

 = xt*
� r  +xt*Λ(t)

Extending the situation above, we consider a general linear equation of the type

(49)
dx
dt

 = h(x) + k(x)Λ(t)

where h and k are assigned functions and Λ(t) is a stochastic process.  Clearly,
the solution of (49), x(t), is a random function.  Its determination cannot be ac-
complished unless Λ(t) is specified.

Let us assume that Λ(t) in (49) is a stationary process with a 0 mean and with a
rather narrow and peaked correlation function:

(50a) E[Λ(t)] = g1 = 0

(50b) E[Λ(t1)Λ(t2)] = g2(t1, t2) = g2(t2-t1)

where g2(t) is appreciably non-zero only in the neighborhood of t=0 with a very
sharp maximum at t=0.  More generally, for any group of instants t1, t2, ..., tn all
lying close to each other we set:

(51) E[Λ(t1)Λ(t2) ... Λ(tn)] = gn(t1, t2, tn)
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and, again, assume that the n-th order correlation function gn has a sharp maxi-
mum at t1=t2=...=tn, being otherwise effectively 0.  Finally, we assume that when
t1, t2,  ..., tr are proximal to each other, and also when tr+1, tr+2, ..., ts are proximal
but far from the group t1, t2, ..., tr and so on, then:

(52) E[Λ(t1) ... Λ(tr)Λ(tr+1) ... Λ(ts)Λ(ts+1) ... Λ(tp) ... ]

= E[Λ(t1) ... Λ(tr)]E[Λ(tr+1) ... Λ(ts)]E[Λ(ts+1) ... Λ(tp)] ...

= gr([t1 ... tr)gs(tr+1 ... ts)gp(ts+1 ... tp) ...

where the functions gn have already been qualitatively specified.

All these assumptions about the stochastic process Λ(t) appearing in equation
(49) may look rather artificial at this stage, but the motivation for them will soon
be apparent.  With this in mind, let us perform a change of variable in (49) by
setting:

(53) y = Φ(x) x=Φ-1(Y)

with

(54) Φ(x) = 
x

�
dz

k z( )

Then, equation (49) is changed into:

(55)
dy
dt

 = 
H y
K y

( )
( )

 + Λ(t)

upon setting:

(56) H(y) = h[Φ-1(Y)]

K(y) = k[Φ-1(Y)]

The advantage of this procedure is that we have constructed a stochastic process
y(t) defined by the simpler equation (55) in which Λ(t) appears in a purely addi-
tive way.  Due to the above assumptions on Λ(t), we now expect y(t), and hence
x(t), to be Markovian.  Its transition p.d.f. fy(y, t/y0) thus satisfies the kinetic
equation which we have derived in (46).
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(57)
∂
∂

= − ∂
∂=

∞fy
t n

B f
y

n

n

n
n n
n

( )
!

[ ]1
1

To evaluate the infinitesimal moments Bn we first express the increment of y
over a small time interval dt by means of the approximation:

(58) dy = y(t+dt) - y(t)        ≈ 
H y
K y

( )
( )

dt + 
t

t dt�

� Λ(τ)dτ

where, here and in the following, the value of the process at time t is considered
as fixed.  Note that equation (58) requires that H(y) and K(y) be smooth; how-
ever, the smoothness of the sample paths of Λ(t) is not implied.  Taking the ex-
pectation of both sides of (58), due to (50), in the limit as dt → 0  we obtain:

(59) B1(y) = 
∂ → ∂

∂
t t

E y
0

1lim( [ ])  = 
H y
K y

( )
( )

To calculate B2 we now square both sides of (58) and obtain:

(60) (dy)2 ≈ O[(dt)2] + 2dt
H y
K y

( )
( ) t

t dt�

� Λ(τ)dτ + 
t

t dt�

� Λ(τ)dτ 
t

t dt�

� Λ(θ)dθ

Upon taking the expectations and after dividing by dt, for small dt we are left
with:

(61) B2dt ≈ E[(dy)2] = 
t

t dt�

� Λdτ 
t

t dt�

� g2(τ-θ)dθ

after making use of equation (50).  Using the earlier specified qualitative behav-
ior of g2, it then follows:

(62) B2 ≈ σ2  with σ2 = ( )dug µ
∞

∞− 2

and with the result becoming exact in the limit as dt → 0.

Proceeding along similar lines, it is not difficult to become convinced that due to
the assumed properties (50) and (52) of Λ(t) the following relationship holds:

(63) dt*Bn(y) ≈ E[(dy)n] = o(dt) (n = 3, 4, ...)
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Equation (57) thus becomes a forward diffusion equation:

(64)
∂
∂

= − ∂
∂

+
∂
∂

f
t y

B f
s f

y
y

y
y[ ]1

2 2

22

with B1(y) and σ2 given by (59) and (62), respectively.  The conclusion is that
equation (55) can be thought of as defining a diffusion process y(t) whose drift
equals the deterministic part of the r.h.s. of the equation while its infinitesimal
variance depends exclusively on the characteristics (g2(τ)) of the random part of
the equation.  Furthermore, if we impose that p{y(0)=y0}=1, with y0 being non-
random, then the specification of such a diffusion process is unique.

Let us now examine the infinitesimal moments An(x) of the Markov process x(t)
defined by equation (49).  Denoting its transition p.d.f by fx(x, t/xo), we know that
for small dt we have:

(65) An(x)dt ≈ (x'-x)
n

fx(x', dt/x)dx'

 = [Φ-1(y')-x]nf
x
[Φ

-1

(y'), dt / x]d[Φ
-1

(y')]

 = [Φ-1(y')-x]nfy[y', dt/Φ(x)]dy' (n = I, 2, ...)

having made use of the one-to-one transformation (53) between the transition
p.d.f.s of the processes x(t) and y(t).  Let us now expand Φ-1(y') as a Taylor series
about the point y=Φ(x):

(66) Φ-1(y') = Φ-1[Φ(x)] + α1(x)[y'-Φ(x)] + 
1
2 α2(x)[y'-Φ(x)]2

     + n = 3 
a x

nn (
, !

with αn(x) = 
d F y

dy
n

n
�1( '

, |y=Φ(x)

It is easy to see:

(67) α1=k(x)

α2=k' (x)k(x)
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where k' (x)=dk(x)/dx

Using (66) and (67) and taking the limit dt → 0 , we obtain:

(68) A1(x) = k(x)B1[Φ(x)] + 
1
2

k'(x)k(x)B2[Φ(x)] + 
=

∞

n

na x
n3

( )
!

Bn[Φ(x)]

Making use of equations (59) and (61) we thus find:

(69) A1(x) = h(x) + 
s2

4
 
dk x

dx
2 (

,

Using the same procedure, we can have:

(70) A
2
(x) = σ2k2(x)

An(x) = 0        (n=3, 4, ...)

Thus, we conclude that the Markov process x(t) defined by equation (49) is a dif-
fusion process with drift and infinitesimal variance given by:

(71) A1(x) = h(x) + 
s2

4
 
dk x

dx
2 (

,

A2(x) = σ2k2(x)

Stochastic Differential Equations (2)

dx h x dt k x dW= +( ) ( )

In plant communities the effect of environmental fluctuations is cumulative with
plants through time.  Although the environmental stochastic influence at each
time point can be considered as some noise, the cumulated realistic noise could
be some other process.  This case can be described by the following equation:

(72) dx = h(x)dt + k(x)dW

where W is some stochastic process such as Brownian motion or Wiener process.
Equation (72) is called an Ito equation.  This equation can be handled by means
of Ito’s calculus which differs in several fundamental ways from classic calculus
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(Rozovskii 1990).  Here we give one of the major results of Ito’s calculus:  Ito’s
formula, which can be used to find the solution of the stochastic model (72).

Ito’s Formula:  Let U: [0, ∞)´RN be a continuous function with continuous par-
tial derivatives on (0, ∞)´RN:

(73) u0 = 
�

�

u
t

ui = 
�

�

u

X i

         i=1, 2, ..., N

uij = 
�

��

2u

X Xi j

      i=1, 2, ..., N

and let X1,  X2,  ...,  Xn be stochastic integrals defined by:

(74) Xi(t) = X
i
(0) + 

0

t

� ϕidWs + 
0

t

� ψids

then Y defined by:

(75) Y(t) = u(t, X1(t), X2(t), ..., XN(t))

is also a stochastic integral and its stochastic differential is:

(76) dY = u
0
dt +

i=1

N

� u
i
dXi + 

1
2 i=1

N

�
j=1

N

� u
ij
dXidXj

and the stochastic integral is:

(77) Y(t) = Y(0) +
0

t

� u0(s, X1, X2, ..., XN)ds +
i=1

N

�
0

t

� ui(s, X1, X2, ..., XN)dXi +

1
2 i=1

N

�
j=1

N

�
0

t

� uij(s, X1, X2, ..., XN)dXidXj

Y(t) = Y(0) + 
0

t

� u0ds + 
i=1

N

�
0

t

� uiϕidWs + 
i=1

N

�
0

t

� uiψids +
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1
2 i=1

N

�
j=1

N

�
0

t

� uijϕiψids

Three simple cases of equation (75) are (1) Y(t)=u(Wt), (2) Y(t)=u(t, Wt), and (3)

Y(t)=u(t, X(t)).

Using Ito’s formula, we can easily find the solution of (72).  From (76) we can see
that the solution x(t) is also a diffusion processes.  Its drift and infinitesimal
variance are given by:

(78) B1(x) = h(x)

(79) B2(x) = σ2k2(x)

To make this discussion more concrete, we consider the following homogeneous
unrestricted population growth model with environmental stochasticity.  Other
situations such as a density dependence model can be solved in a similar way.
Taking the deterministic functions h(x) and k(x) in (58) to be rx(t) and αx(t) re-
spectively, we have the simple model:

(80) dx(t) = rx(t) + αx(t)dBt

where r is the intrinsic growth rate and Bt is a Brownian motion.  To solve (66),
let Y(t)=u(x(t)=ln(x(t)), where x(t)>0.  Using (62), we obtain the stochastic differ-
ential of u(x).

(81) du(x) = (r-
a2

2
)dt + αdBt

Thus, the solution for the simple population growth model (80) is

(82) x(t) = x(0)exp[(r-
a2

2
)dt + αdB

t
]

The expectation of x(t) is exp(rt)*E[x(0)].  If x(0) is fixed, the expectation is the
same as the deterministic model.  In the deterministic situation (i.e., x(t) is non-
random), x(t)→ ∞  as t→ ∞  whenever r is positive.  However, in equation (82) x(t)
may → ∞  or 0 even if r is positive.  If r is greater than a2 2/ , x(t)→ ∞  almost
surely as t→ ∞ .  When r is less than αx(t), x(t) goes to zero almost surely as
t→ ∞ .  When r is equal to αx(t), the population growth is then completely con-
trolled by the environmental fluctuations.
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Joint Effect of Demographic and Environmental Stochasticity

In the real world, both demographic and environmental stochasticity are un-
avoidable.  Given the difficulties of analyzing each separately, it should come as
no surprise that few multispecies analyses incorporate both.  To show how to
model the combined effect of environmental and demographic noise, let us start
with the birth and death process.

We rewrite the birth and death process as:

(83)
dp t

dt
n ( )

 = -n(λ+µ)pn(t) + λ(n-l)pn-1 (t) + µ(n+1)pn+1(t)

or

dp t
dt
n ( ) ,  = -(λn+µn)pn(t) + λn-1pn-1 (t) + µn+1pn+1(t)

where λn =nλ and µn=nµ. λ+µ=R is the strength of demographic noise.

We suppose that the deterministic dynamics are density dependent, i.e., the lo-
gistic growth:

(84) dX/dt = Xr(1-X/K)

Environmental fluctuations are included by adding a noise term g(X)dW in (84).
The corresponding stochastic equation is given as:

(85) dX = Xr(X)dt + g(X)dW

where W is a standard Wiener process.  Different choices for the function g(X)
can be motivated.  We take:

(86) g(X) = σX

In this case σ describes the strength of the random fluctuation of the individual
growth rate r(X).

As discussed before, (85) is equivalent to a diffusion equation

(87)
�

�

�

� �

�p x t

t x
A x P

x
B x p

( , )
[ ( ) ] [ ( ) ]� � �

1

2

2

2
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where p(x, t) is the probability density that the individual number X shows the
value x at time t.  The coefficients are given by:

(88) B(x) = σ2x2

(89) A(x) = xr(x) = xr(1-x/K)

Next we show that the population dynamics with environmental noise, equation
(87), can be approximated by the birth and death process (83).  We first discretize
the right-hand side of (87) by:

(90)
d
dx

B x
B x h B x

h
( )

( ) ( )
�

� �

(91)
d
dx

B x
B x h B x B x h

h

2

2 2

2
( )

( ) ( ) ( )
�

� � � �

with the discretization length h for variable x (h is usually set to 1).  The deriva-
tives of A(x) and P(x) are handled in the same way.  A simple rearrangement of
(87) with (90) and (91) and the definition:

(92) p(nh, t) = pn(t)

results in an equation (83) of the birth and death process.  The birth and death
rates in this case are:

(93) λ
n
 = ])()([

2
1

2 h
nhA

h
nhB +

(94) µ
n
 = ])()([

2
1

2 h
nhA

h
nhB −

In the final step we combine both discrete models, i.e., the discrete description of
environmental noise by (83) with (93) and (94) at high individual numbers and
the model (83) which describes demographic noise at low individual numbers.
Therefore, our final stochastic dynamics model, which is valid for both small and
large population communities, is the birth-death model (83) with the following
birth and death rates:

(95) λn = 
1
2

 [σ2n2 + Rn + nr(n)]
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(96) µ
n
 = 

1
2

 [σ2n2 + Rn - nr(n)]

where Rn is the demographic noise, and r(n) is the density dependent intrinsic
growth rate.  The simplest form of r(n) is the type of logistic growth rate, i.e.,
r(n)=r(1-n/K).

A natural community usually has more than one species.  The Lotka-Volterra or
the Kolmogorov model can model competition among species if there are only two
or three species in the community.  Using the Lotka-Volterra model or the Kol-
mogorov model in a highly diverse community may cause chaos because of the
feedback.  This problem can be solved by introducing the growth rate function
r(n) as some other form of the resources.  For example, if the total available re-
source of the community is K, and the used resource at time t, is Kt, then we can
define the growth rate of the i-th species as ri(n)=ri*(1-Kt/K) or some other form
which can express the competition relationship among species.

For the combined model, we want to emphasize the following points.  If the den-
sity dependence term n/K and the noise term σ2n2 in equations (95) and (96) are
omitted, we get the model with only demographic noise.  This model is motivated
by simple biological arguments and has been used with small populations by
many authors.  When the demographic noise term, Rn, is omitted, the resulting
model is a diffusion equation, which has been considered by many authors to be
a description of environmental noise.
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4 Stochastic Estimation and Identification

Quantitative population study has been very popular for several decades and its
models have been well developed.  These models fall in the categories:  dynamic
models and stochastic models.  In their book, Modeling Fluctuating Populations,
Nisbet and Gurney (1982) present the most common types of dynamics and sto-
chastic models and the application conditions for each.

One of the basic discrete dynamics models of plant population is the logistic
model (Nisbet and Gurney, 1982):

(1) x x a bx H Ik k k k k+ = − − +1 ( ) ,  k = 0, 1, ...

where, xk+1 and xk are the population size at time k+1 and k, respectively, h(x,t) is
the harvesting, I is immigration or fertilization, and a and b are model parame-
ters.

Consider a more general deterministic system:

(2) x f x uk k k k+ =1 ( , ),  k = 0, 1, ...

where x Rk
n∈  is the state and u Rk

m∈  is the input at time k.

One property of equation (2) is that if the current state xk and the input sequence
of the system, uk, uk+1, ..., uk+m are given, the future states, xk+1, xk+2, ..., xk+m+1 can be
determined exactly.  That is, the deterministic model (2) makes exact prediction
of the future population of the plant system.

Under special laboratory conditions and in some isolated environments, popula-
tion growth may act in a deterministic way.  However, most natural populations
do not behave as nicely as described by the deterministic model (Hallam 1986).
Populations fluctuate about some deterministic trend due to demographic sto-
chasticity and environmental stochasticity (Turelli 1986).  In Chapter 3 we dis-
cussed how to model stochastic systems.

A stochastic model is able to predict the probability that at a given time, the
population will be of a particular size.  Given the probability or the conditional
probability of future behavior, the expectation of the population size can be
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determined as it is in the deterministic model.  In the real world, however, the
probability distributions of most plant populations are rarely known.  Because
we often do not have descriptive information for the probability distribution, past
data must be examined.  The availability of observations from the past allows for
an alternative method of population modeling:  the technique of regression.  This
technique has become a common tool in estimation and prediction in many areas.

One serious problem with regression models is the assumption of constant coeffi-
cients.  Because of this assumption, underlying phenomena can never be de-
tected.  Also, the reliability of the estimate of regression depends on the sample
size.  A regression model usually requires a minimal sample size of 30.  However,
population data that spans 30 or more years is not common.  Sometimes we can-
not afford to have a large sample size.  Moreover, observed data used in regres-
sion is assumed to be correct.  This is not always the case.  In the real world,
most natural communities are full of noise.  Observed data contains errors such
as system noise and measurement error.  For some regression models, these er-
rors not only create a large variance, but also produce a biased estimate (Gert-
ner, Cao, and Zhu 1995).

To get a better grip on these problems, we introduce the theory of optimal esti-
mation.  An estimator is a process by which information can be extracted from
data, i.e., to infer desired information by filtering out the noise from the data.
Because the estimator combines the descriptive information and the data infor-
mation of a system to form an estimate, the estimate usually has a lower vari-
ance than a conventional regression estimate.  The most common estimator is
the Kalman filter (Kalman 1960).  The filter describes how to process the meas-
urement data for a given linear system.  The theory of optimal application has
been successfully applied in a broad range of areas.  These areas include signal
processing in communications, tracer studies in medicine, statistical image en-
hancement, estimation of traffic densities, chemical process control, satellite or-
bit estimation, unclear reactor parameter identification (Gelb 1974), and dendro-
climatology (Visser and Molenaar 1988).

Optimal Estimation

An optimal estimator is a computational algorithm that processes measurements
in order to deduce a minimum error estimate for the state of a system.  It does
this by using knowledge of system and measurement dynamics, assumed
statistics of system noise and measurement errors, and with initial condition
information.  The advantages of this type of data processor are that it minimizes
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the estimation error in a well-defined statistical sense and that it uses all
measurement data plus prior knowledge about the system.

There are three types of estimation problems:  filtering, smoothing, and predic-
tion (Gelb 1974).  When the time at which an estimate is desired occurs at the
last measurement point, the problem is referred to as filtering.  When the time of
interest falls within the span of available measurement data, the problem is
termed smoothing.  When the time of interest occurs after the last available
measurement, the problem is called prediction.  In the following sections we will
discuss linear filtering and prediction, and two techniques of nonlinear approxi-
mation.  For convenience, we consider a stochastic system without input.  Incor-
porating a known input is straightforward.

Optimal Linear Filtering

First let us consider a discrete stochastic system without input control:

(3)
x A x G w
y C x H v

k k k k k

k k k k k

+ = +
= +
1

,

where x R y R w R v Rk
n

k
p

k
g

k
h∈ ∈ ∈ ∈, , , ; Ak, Gk, Ck, and Hk are possible time-

varying, known matrices of appropriate dimension, x and y are, respectively, the
state space and observation space.  The basic random variables {x0, w0, ..., v0, ...}
are all independent and Gaussian, with x N0 00~ ( , )Σ , w N Qk ~ ( , )0 ,
v N Rk ~ ( , )0 .  The covariances are all known.  The available information at time
k is z y y y yk k

k k= = −: ( , ,..., )1 0 .  The random variable xk, xk+1, and yk are jointly

Gaussian; denote

(4)
p x y N x and

p x y N x
k k k

k
k k k k

k k k
k

k k k k

| | |

| | |

( | ) ~ ( , ),

( | ) ~ ( , ).

Σ

Σ+ + + +1 1 1 1

By definition,

(5)
x E x y and

E x x x x y
k k k

k

k k k k k k k k
T k

|

| | |

: { | },

: {( )( ) | }.

=

= − −Σ

Similarly,

(6)
x E x y and

E x x x x y
k k k

k

k k k k k k k k
T k

+ +

+ + + + +

=

= − −
1 1

1 1 1 1 1

|

| | |

: { | },

: {( )( ) | }.Σ
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To obtain the recursion rule, we take the following steps.

Step 1

From (3),

(7) x A xk k k k k+ =1| | .

For convenience denote

(8)
� : ,
� : .

| |

| |

x x x
x x x

k k k k k

k k k k k

+ + += −

= −
1 1 1

From (3) we have

(9) � �| |x A x G wk k k k k k k+ = +1

By the independence of � |xk k  and wk,

(10) Σ Σk k k k k k
T

k k
TA A G QG+ = +1| |

Step 2

Denote

(11)
y E y y and
y y y

k k k
k

k k k k k

|

| |

: { | },
� :

−
−

− −

=
= −

1
1

1 1

Since vk and yk-1 are independent, this gives

(12)
y C x
y C x H v

k k k x k

k k k k k k k

| | ,

| |� � .
− −

− −

=
= +

1 1

1 1

By the independence of � |xk k  and vk

(13) Σ Σk k
y

k k k k k k
T

k k
Ty C C H RH| | |: cov( � )− − −= = +1 1 1

From (12) and the independence of xk k| −1 and � |xk k−1, we also get

(14) Ex y Ck k k
T

k k k
T

| |− −=1 1Σ
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Step 3

By the innovation principle, we have

(15) x E x y yk k k
k

k k| |{ | , � }= −
−

1
1

      
= +−

−
−

−−
E x y Ex y yk

k
k

T
k k
y

k kk k
{ | } ( � )( ) �| | |

1
1

1
11

Σ

       = + +− − −
−

−x C C C H RH yk k k k k
T

k k k k
T

k k
T

k k| | | |[ ] � .1 1 1
1

1Σ Σ

and

(16) Σ Σ Σ Σ Σk k k k k k k
T

k k k k
T

k k
T

k k kC C C H RH C| | | | |[ ] .= − +− − −
−

−1 1 1
1

1

Therefore, the conditional density p N xk k k k k k| | |~ ( , )Σ  can be obtained from the

following recursion relations.

(17) x A x L y C A xk k k k k k k k k k k+ + + + += + −1 1 1 1 1| | |[ ],

x L y0 0 0 0| ,=

Σ Σk k k k k kI L C+ + + + += −1 1 1 1 1| | ,( )

Σ Σk k k k k k
T

k k
TA A G QG+ = +1| |

= −( ) ,| I L C0 0 00 0

here

L C C C H RHk k k k
T

k k k k
T

k k
T= +− −

−Σ Σ| |[ ]1 1
1

L C C C H RHT T T
0 0 0 0 0 0 0 0

1= + −Σ Σ[ ]

The recursion algorithm (17) specifies the transition function of the information
state.  It is known as the discrete Kalman filter.  The matrix L in the recursion is
called the Kalman gain matrix (Gelb 1974).  It can be shown (e.g., Otter 1978)
that the ordinary least squares (OLS) fitting procedure is a special case of the
Kalman filter (17).

The transition from the discrete to the continuous formulation of the Kalman
filter is straightforward by setting time k and k+1 in the discrete case to time tk
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and tk+1, respectively, and letting t t tk k+ − = →1 0∆ .  First, consider the following

continuos stochastic system:

(18) �x Fx Gw= +

y Cx v= +

where w, v are white noise processes with mean 0 and spectral density matrix Q
and R, respectively.  In this continuous case, v is equivalent to Hkvk in the dis-
crete case.  To make the transition, let us first rewrite the discrete system as a
difference equation.

(19) x A x G wtt k t k kk k k+
= +

1

x x
t

A I
t t

G
t t

t k t k k

k

k

k
x w+

− −= +1
∆ ∆ ∆

( )

From this difference we have the following equivalence, valid in the limit as
t t tk k+ − = →1 0∆ :

A I F tk → + ∆

In the discrete case we have shown that:

(20) Σ Σk k k k k k
T

k k
TA A G QG+ = +1| |

This is now rewritten as:

A I F tk → + ∆

In the discrete case we have shown that:

(21) Σ ∆ Σ ∆ ∆k k k k k
T

k k
TI F t I F t G QG t+ = + + +1| |( ) ( )

Expansion yields:

(22) Σ Σ Σ Σ ∆ ∆k k k k k k k k
T

k k
TF F G QG t O t+ = + + + +1

2
| | | |( ) ( )

From the discrete model we also have:

(23) Σ Σk k k k k kI L C| |( )= − −1
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Insert (23) into (22) and rearrange the terms we have:

(24)

Σ Σ
∆ ∆Σ Σ Σ

Σ Σ ∆

k k k k

t k k k k
T

k k
T

t k k k k

k k k k k k k k
T

F F G QG L C

FL C L C F O t

+ −−
− − −

− −

= + + −

− − +

1 1

1 1
1

1

1 1

| |

| | |

| | ( )

Now let us exam the term L tk / ∆

1 1
1 1

1
∆ ∆ Σ Σt k t k k k

T
k k k k

T
k k

TL C C C H RH= +− −
−

| |[ ]

(25) = +− −
−Σ Σ ∆ ∆k k k

T
k k k k

T
k k

TC C C t H RH t| |[ ]1 1
1

= +− −
−Σ Σ ∆k k k

T
k k k k

TC C C t R| |[ ]1 1
1

Taking the limit, we get:

(26)
∆

∆ Σ
t

t k
TL C R

→

−=
0

1 1lim

and,

(27)
� ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

Σ Σ Σ

Σ Σ

t F t t t F t G t Q t G t

t C t R t C t t

T T

T

= + +

− −1

Σ Σ( )0 0=

By similar manipulation, we have the state estimate of the continuos system.

(28) ��( ) ( ) �( ) ( )[ ( ) ( ) �( )]x t F t x t L t y t C t x t= + −

The matrix gain is:

(29)
� � � � � � � � � �� �

� � � � � � � �� � � � � � � �� � � � � �
L t

t C t R t E w t v
t C t G t t R t E w t v t t

T t

T t( )
,

,
�

�

� � �

�

�
�

��

�

�

�

� 	 	

1

1

0�

� � �

Optimal Prediction

The prediction model can be derived from the filtering model in a straightfor-
ward fashion.  The one-step predictor is given by equations (7) and (10).
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(30)
x A x

A A G QG

k k k k k

k k k k k k
T

k k
T

+

+

=
= +

1

1

| | .

| |Σ Σ

where xk k|  and Σ k k|  can be calculated from the filtering estimator (17).

Using equation (3), we can derive the n-step predictor.

x A x G wk n k n k n k n k n+ + − + − + − + −= +1 1 1 1

(31) x A x G wk n k i
i

n

k k i
i

n

k i+ +
=

−

+
=

−

+= ∏ +
0

1

0

1

Therefore, the n-step predictor is:

(32)
x A x

A A G QG

k n k k i
i

n

k k

k n k k i
i

n

k k k i
i

n
T

k i k i
T

i

n

+ +
=

−

+ +
=

−

+
=

−

+ +
=

−

= ∏

=∏ ∏ +

| |

| | ( )

0

1

0

1

0

1

0

1

Σ

Nonlinear Estimation

Now let us consider a more general case described by the nonlinear Stochastic
Difference Equation (SDE) with discrete observations.

(33) � ( , ) ( )x f x t w t= +

y h x t vk k k k= +( ( )) ,  k=1, 2, ...

where f(x,t) and h(x,t) are nonlinear functions, w(t) is Gaussian noise with mean
0 and having spectral density matrix Q(t), and v N Rk k~ ( , )0 .  One further com-
plicated mode is the form of � ( , ) ( , ) ( )x f x t g x t w t= + .  In this case a theory for es-
timating x(t) cannot be developed within the traditional framework of mean
square stochastic calculus because the r.h.s. of the equation is not integratable in
the mean square sense.  This difficulty is overcome by formulating the nonlinear
filtering problem within the context of Ito calculus.

We first discuss the nonlinear system with the form of (33).  There are two
widely used linearization techniques:  truncated Taylor expansion and statistical
approximation (Gelb 1974).

The Taylor expansion method is to write nonlinear function f(x,t) and h(x,t) as a
Taylor expansion about the current estimate of the state vector.
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(34)
f x t f x t x x

h x t h x t x x

f
x x x

h
x x x

( , ) ( � , ) | ( � ) ...

( , ) ( � , ) | ( � ) ...
�

�

= + − +

= + − +
=

=

∂
∂

∂
∂

Discarding all the terms with second or higher order, we obtain a linear ap-
proximation of f(x,t) and h(x,t) about the current estimate of the state vector.
The derivation of the linear filter has been discussed in the previous section.

To obtain an accurate estimate, we need higher-order filters.  One method by
which the estimate �xk  can be improved is by repeatedly calculating �xk  , Lk, and
Σk k| , each time linearizating about the most recent estimate.  Another method is

to include more terms in the expansions for f(x,t) and h(x,t).

The statistical linearization is to seek a linear approximation for a vector func-
tion f(x) of a vector random variable x, having probability density function p(x).
The approximation is made by change functions f(x) and h(x) in an approximate
linear form.

(35)
f x E f x N x x
h x E h x N x x

f

k k h

( ) [ ( )] ( �)
( ) [ ( )] ( �)

≅ + −
≅ + −

where Nf and Nh are called the function gain matrices.  They are estimated by
using the technique of minimum mean square error.  These estimates are given
by:

(36)
N t E fx fx t

N k E h x x h x x
f

T T

h k k k k k
T

k k k k k
T

k k
T

( ) [ ( ) �� ] ( )

( ) { [ ( ) ] � ( ) � }| | | | |

= −

= −

−

− − − − −

Σ

Σ

1

1 1 1 1 1

Where E fx f xT( ), � , �  are expectations calculated assumed x N x~ ( �, )Σ .

E h x x h x xk k k k k
T

k k k k k[ ( ) ], � ( ), �| | | |− − − −1 1 1 1 are expectations calculated assumed
x k N xk k k k( ) ~ ( , )| |− −1 1Σ .

Because nonlinear functions f(x) and h(x) are linearized, the approximate opti-
mal filter for the linearized system now can be found as discussed above.  In
many instances, the statistical linearization technique has better performance
than the Taylor expansion method.  However, the decision as to which types of
filters should be used in a particular application depends upon their computa-
tional complexity and relative performance as observed from realistic computer
simulations.
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Let us consider a more general nonlinear stochastic system.

(37)  � ( , ) ( , )x f x t G x t wt t t t� �

y h x t vt t k kk k
� �( , )

Now suppose that we generate a reference deterministic trajectory x t( ) , with
given x t( )0 , satisfying:

(38) � ( ( ), )x f x t t�

Define:

(39) �x x x tt t� � ( ),

�y y y tt t� � ( ), and

M t x tk k
h t x t

x
i k k

j
[ , ( )] [ ]( , ( ))

�

�

�

Linearizing (37) about x t( )  by a Taylor series expansion, we obtained the line-
arized discrete system:

(40) � �x t t x t x wt k k k t tk k k� �

� �
�1 11�[ , , ( )]

� �y M t x t x vt k k t kk k
� �[ , ( )]

Where �[ , , ( )]t t x tk k k�1  is the state transition matrix.  That is,

(41) d t dt f t t� �( , ) / ( ) ( , )� �� , and

� � �( , ) ( , ) ( , )t t� � � ��

The new noise term, wtk�1
, is given by:

(42) w t G dwt kk�
�

��1 1�( , ) ( )� �
�

which is a form of Ito’s stochastic integral.  From the theorem of Ito’s stochastic
integral, it is easy to see that {wtk

} is a white Gaussian sequence with a mean of

0 (Jazwinski 1970), { } ~ [ , ( )]w N Q ktk�
�

1
0 1 , where
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(43) Q k t G Q G t dkt

t T T
k

k

k( ) ( ) ( ) ( ) ( ) ( ), ,� �
� �

�

�1 1 1
1
� �� � � � � �

Applying the linear filter to the linearized system (40), we obtain the extended
Kalman filter for the nonlinear system (37) (Jazwinski 1970).

(44) x x f x t dtt t t t t

t

t tk k k k
k

k

k�

�

� � �1

1

| | |( , )

� � � �t t k k t t t t
T

k k t t kk k k k k k k k
t t x t t x Q t

�

� �
� � �1 1 1 1| | | |[ , , ] [ , , ] ( )

(45) x x K t x y h t xt t t t k t t t k t tk k k k k k k k k� � � � � �

� � � �
� �1 1 1 1 1 11 1| | | |[ , ] [ ( , )]

� �t t k t t k t t t t k t tk k k k k k k k k k
I K t x M t x I K t x

� � � � � �

� � �
� � �1 1 1 1 1 11 1 1| | | | |{ [ , ] [ , ]} { [ , ]

M t x K t x R k K t xk t t
T

k t t
T

k t tk k k k k k
[ , ]} [ , ] ( ) [ , ]| | |� � �

� � �

� �1 1 11 1 1
1

The Kalman gain is:

(46) K t x M t x M t xk t t t t
T

k t t k t tk k k k k k k k
[ , ] [ , ]{ [ , ]| | | |� � �

� � � �

�1 1 11 1 1 1
�

� � �
� �

�

�

� t t
T

k t tk k k k
M t x R k

1 11
11| |[ , ] ( )}

To improve the reference trajectory, we need some iteration algorithms in which
the estimate � � � � �i t t k i k i k i k t t ix K t y h t M t x

k k k k� � � � �
� � � � �

� �
1 1 1 1 11 1| |( , ){ ( , ) ( , )[ ]}

can be improved by repeatedly calculating i l� 1,..., , Lk, and Σk k| , each time

linearizating about the most recent estimate.  The following is the iterated ex-
tended Kalman filter with (45) replaced by the iterator (Jazwinski 1970):
η η η η ηi t t k i k i k i k t t ix K t y h t M t x

k k k k+ + + + += + − − −
+ +1 1 1 1 11 1| |( , ){ ( , ) ( , )[ ]}, with

i l= 1,...,  and xt t lk k+ +
=

1 1| η .  The iteration starts with η1 1
=

+
xt tk k| , and terminates

when there is no significant difference between consecutive iterates.

Stochastic Identification

A Kalman filter can yield optimal performance for a linear stochastic system.
Consider the discrete stochastic system (3)

(47) x A x B u G wk k k k k k k�
� � �1

y C x H vk k k k k� � ,
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The Kalman estimator (conditional mean under given information
x A x L y C A xk k k k k k k k k k k� � � � �

� � �1 1 1 1 1| | |[ ],) is given by:

(48) x A x L y C A xk k k k k k k k k k k� � � � �
� � �1 1 1 1 1| | |[ ],

The basic assumption of the Kalman estimator is that the descriptions of A, B, G,
C, H, Q, R, and Σ0 [as defined in (3)] are correct.  As a practical fact, this is usu-

ally impossible.

Estimations of these quantities must be made and improved by the information
from observation.  Therefore, we need to develop some procedure that provides
the best descriptions of A, G, C, H, Q, R, and Σ0 from observations and other

prior knowledge.  This problem is called parameter identification.

Consider the following system:

(49) y a y b u c wk i k i
i

p

i k i
i

h

i k i
i

r

= − + +−
=

−
=

−
=1 1 0

This is an Autoregressive Moving Average Model (ARMAX) model.  The first
term on the r.h.s. of equation (49) expressing the dependence of the current out-
put on its own past values is the autoregressive, or AR, term.  The second term is
the external inputs (or control inputs) of the system.  The last term, which is
called the moving average (MA), is a moving combination of independent random
variables v

k
.

Using a shift operator, the ARMAX model (49) can be expressed as:

(50) A q y q B q u C q wk k k( ) ( ) ( )− − − −= +1 1 1 1

where q−1  is a backward shift operator, i.e., q y yk k
−

−=1
1, and

(51)

A q a q a q
B q b b q b q
C q c q c q

n
p

n
h

n
r

( )
( )
( )

− − −

− − −

− − −

= + + ⋅⋅⋅+
= + + ⋅⋅⋅+

= + + ⋅⋅⋅+

1
1

1

1
0 1

1

1
1

1

1

1

The stationary condition of an autoregressive process, such as
y a y a y et t p t p t= + ⋅⋅⋅+ +− −1 1 , is that all roots z0 of its polynomial, 1 1− − ⋅⋅⋅−a z a zp

p,

have modules | |z0 1> .  Also, a moving average process of order r, MA(r), can be

written as an infinite AR process if all the roots of its polynomial,
1 1− − ⋅⋅⋅−c z c zr

r , have modules greater than 1.  Such an MA process is called in-
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vertible.  Without special notice we henceforth assume that the MA term in the
ARMAX model is invertible.

Least Square Mean Estimates (LSE)

Suppose we have the data { , , , , , }Φ Φ0 1 1⋅⋅⋅ ⋅⋅⋅−n ny y  and we believe that the follow-

ing model fits the data.

(52) y wk k
T

k+ += +1 1Φ �

where wk is the error term with a mean of 0.

Let F
n
 be a s-field generated by the data { , , , , , }Φ Φ0 1 1⋅⋅⋅ ⋅⋅⋅−n ny y .  Then, {wk, k £ n}

is Fn-measurable because wk can be deduced from yk and Fk through the relation
w yk k k

T
+ += −1 1 Φ � .

We also assume that {wk} is a Martingale difference sequence with respect to the
increasing sequence of s-field {ℑ k} which satisfies

E wk k[ | ]2
1

2
− = � ,  a.s., for all k

and

k
k tE wsup [| | | ]�

− < ∞1 , a.s., for some α > 2.

The least square method is to choose θ to minimize

(53) V yn k k
T

k

n

( ) ( )� �= −+
=

−

1
2

0

1

Φ

By setting � �

��

Vn ( ) = 0 , we obtain the LSE of θ

(54) � ( )�n k k
T

k

n

k k
k

n

y= −

=

−

+
=

−

Φ Φ Φ1

0

1

1
0

1

Suppose one more datum ( , )Φn ny +1  becomes available; then we can obtain the

new LSE ��n+1 from the old LSE ��n .

(55)
� � ( � ),

.
� � �n n n n n n

T
n

n n n n
T

R y
R R

+
−

+

+

= + −
= +

1
1

1

1

Φ Φ
Φ Φ
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Where Rn k k
T

k

n

=
=

Φ Φ
0

.  To verify (55), we substitute the equation

� ( )�n k k
T

k

n

k k
k

n

y= −

=

−

+
=

−

Φ Φ Φ1

0

1

1
0

1

 by Φk k
k

n

n ny R+
=

−

−=1
0

1

1
�� , and write R Rn n n n

T
− = −1 Φ Φ

Let P Rn n= −1.  We obtain the LSE recursions.

(56)

� � ( � ),

( � ).

� � �

�

n n
P

P n n
T

n

n n
P P

P n n
T

n

n n

n
T

n n

n n n
T

n

n
T

n n

y

P P y

+ + −

− + −

= + −

= − −

−

−

− −

−

1 1 1

1 1 1

1

1

1 1

1

Φ
Φ Φ

Φ Φ
Φ Φ

Φ

Φ

For convenience, we define � �� � �k k k= − , and � �w yk k k
T

k+ += −1 1 Φ � .

Theorem (LSE convergence)

Consider the LSE algorithm defined by (55) and applied to model (52), then

(i) ( � ) (log ( ))w w O Tr Rk
k

n

k n
=

−− =
0

2
1   a.s.

(ii) || � || ( )log ( )
( )min

�
�n

Tr R
RO n

n

2 1

1
= −

−
  a.s.

(iii)
n

S k
i

k

n

k
n
i w

→∞ =

−

+
−

=lim 1

0

1

1
1

0Φ   a.s., here i=1, ..., 2p+2,

Moreover, if 
n

nR
→∞

= +∞lim min ( )�  and R
Tr R

n

n
I( ) ≥ �  for all large n, then

n
n

→∞
=lim �� �   a.s.

Proof

We will not prove results (i) to (ii) here.  They can be proved by using Martingale
convergence theorem and Kronecker’s lemma (i.e., two real valued sequences {xk}

and {r
k
} satisfying r

k
 > 0, 

k
k

x
r

k

r k

k
→∞ =

∞

= ∞ < ∞�lim ,
1

, then 
N

r k
k

N

N
x

→∞ =
� =lim 1

1

0).  We only

give the proof of (iv), the convergence of the estimate.
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Since S Trn
i

k
i

k

n

k k
T

k

n

−
=

−

=

−

= + ≤ +1
2

0

1

0

1

1 1( )Φ Φ Φ , from result (iii) we have

n Tr
k
i

k
k

n

k k
T

k

n w
→∞

+
=

−

=

− =lim 1
1

0

1

0

1 0
Φ Φ

Φ

and

�� �n n k
k

n

kP w= + −
=

−

+1
0

1

1Φ

� [ ] [ ]� �n
Tr

k k
T

k

n

Tr
k k

k

n

k k
T

k

n
k k

T

k

n w= + ×
=

−

=

−
=

−
−

+
=

−
1

0

1
1 1

1
0

1

0

1

0

1
Φ Φ Φ Φ

Φ Φ Φ

Taking the limit of the equation above, we obtain result (iv).

Suppose we have the data { , , , , , }Φ Φ0 1 1⋅⋅⋅ ⋅⋅⋅−n ny y  at time n.  The one-step predic-

tion made by ��n  is

� �yn n
T

n+ =1 Φ �

Denote θi is the i-th element of θ, then the feedback law is explicitly given by

(57)

u y q y

q u q h u

y q h y q h r y

n q n n n n q

n n n n h

n n n n n r

n
= + ⋅⋅⋅+

+ + + ⋅⋅⋅+ +

− − + + − ⋅⋅⋅− + +

−
+ − +

− − +

+ − +

1
1 1

1 1

1 1

1

2

1

� ( )
[ � ( ) � ( )

� ( ) � ( )

� � ( ) � � ( ) �

�
� �

� �

� �

Similar results can be obtained for stochastic gradient (SG) algorithm.  The SG
algorithm is regarded as a simplification of the LSE recursions since the scalar
gain in the SG algorithm is only the trace of the matrix gain in the LSE algo-
rithm.

Conditional Mean Estimates

Let us rewrite the ARMAX model (49) as

y wk k
T

k+ += +1
0

1Φ �

where Φk t t p t t h t t r
Ty y u u w w= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅− − −( , , , , , , , , ) , �

0
1 1 1= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅( , , , , , , , , )a a b b c cp h r

T .

The true parameter �0  is unknown and we want to identify it.
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Theorem (conditional mean estimate)

Assume that � �
0 ~ ( , )N Σ , {yk} is determined by y wk k

T
k+ += +1

0
1Φ � , { }wk  is

identical independent distribution (iid) with w Nk ~ ( , )0 2
� , and { , , }y s ks sΦ ≤  is

independent of { , }w s ks ≥ +1 .  Then � { | , , , , , }� �n n nE y y= ⋅⋅⋅ ⋅⋅⋅−
0

0 1 1Φ Φ  minimizes

E y yn n{|| || | , , , , , }� �
0 2

0 1 1− ⋅⋅⋅ ⋅⋅⋅−Φ Φ , and ��n  and

P E y yn n n
T

n n: {( � )( � ) | , , , , , }= − − ⋅⋅⋅ ⋅⋅⋅−� � � �
0 0

0 1 1Φ Φ  satisfy the recursions

(58)

� � ( � ),

( � ).

θ θ θ

θ

n n
P

P n n
T

n

n n
P P

P n n
T

n

n n

n
T

n n

n n n
T

n

n
T

n n

y

P P y

+ + −

− + −

= + −

= − −

−

−

− −

−

1 1 1

1 1 1

1

1

1 1

1

Φ
Φ Φ

Φ Φ
Φ Φ

Φ

Φ

This theorem says if { }wk  is Gaussian white noise, the recursions for the condi-

tional mean of θ0 under Bayesian formulation coincides with the LSE.

Proof

Let V ( )� =E y yn n{|| || | , , , , , }� �
0 2

0 1 1− ⋅⋅⋅ ⋅⋅⋅−Φ Φ

�

� �

��
�min{ ( )} ( )V J = 0

               − ⋅⋅⋅ ⋅⋅⋅ =−2 00
0 1 1E y yn n{| | | , , , , , }� � Φ Φ

               = ⋅⋅⋅ ⋅⋅⋅−
� { | , , , , , }� �E y yn n

0
0 1 1Φ Φ

To prove the recursion (58), we rewrite the ARMAX model as a state space repre-
sentation.

� � � �n n N+ =1 0, ~ ( , ),Σ

y wk k
T

k+ += +1
0

1Φ �

Then we can use the Kalman filter as discussed in the previous section

x A x L y C A xk k k k k k k k k k k+ + + + += + −1 1 1 1 1| | |[ ],

Σ Σk k k k k kI L C+ + + + += −1 1 1 1 1| | ,( )

Σ Σk k k k k kI L C+ + + + += −1 1 1 1 1| | ,( )
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L C C C H RHk k k k
T

k k k k
T

k k
T= +− −

−Σ Σ| |[ ]1 1
1

and make the following exchanges

xk k k|
�⇔ �

Σk k kP| ⇔

A I G C H Ik k k k
T

k⇔ ⇔ ⇔ ⇔, , ,0 Φ

We obtain the recursion (58).
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5 STELLA II Modeling Process

In the previous chapters, we have chosen and defined theoretical statistical
measures of plant diversity and developed theoretical models for plant communi-
ties.  The stochastic dynamics models developed contain two main components:
deterministic process and stochastic process.  The deterministic model controls
the biological dynamics of the plant communities, while the stochastic process
simulates the biological and ecological fluctuations.  When we have a good un-
derstanding of the dynamics and stochastic behaviors of the plant community we
are studying, the stochastic dynamics model is able to make respectable predic-
tions for the community.  Once we have chosen to use a stochastic model, there
remains the task of selecting the mathematical approach to follow in its analysis.
Figure 1 illustrates the sequence of decisions involved in choosing an appropriate
model.  The first decision is the specification of birth and death probabilities.
The second is to determine the size of fluctuation due to demographic variation.
Finally, a choice of representation of environmental variation must be made.
Following the flow of the diagram, we can select one of the mathematical models
discussed in Chapter 3 as our simulation model.

Choose function forms
for birth and death rates

Demorgraphic

fluctuation

Environmental

fluctuation

Environmental

fluctuation

Stochastic model with
combined fluctuations

Deterministic model Stochastic differentiation

SmallSmall

Small Large

LargeLarge

Birth and death process

Figure 1.  Sequence of choosing a stochastic model.

As we pointed out before, a stochastic model is able to predict the probability
that the population will be of a particular size.  Given the probability or the
conditional probability of future behavior, an estimate of the population can be
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determined as in the deterministic model.  In the real world, however, we usually
do not know the probability distribution, and we do not know the details of
population dynamics.  Instead, we must look at past data.  In this case, estima-
tion models discussed in Chapter 4 will be our choice of simulation models.

U.S. military installations across the country cover thousands of plant commu-
nity types.  With the development of the U.S. Army Land Condition Trend
Analysis (LCTA) program, Army-wide inventory plots have been established and
field data have been collected on many Army installations since 1989.  For this
reason, we choose the estimation model presented in Chapter 4 as our major
STELLA simulation model.  (STELLA is a software modeling tool.)  The dynam-
ics model is used only for testing purposes.

Consider the discrete stochastic system presented in Chapter 4.

(1)
,

1

kkkkk

kkkkk

vHxCy
wGxAx

+=
+=+

where x R y R w R v Rk
n

k
p

k
g

k
h

� � � �, , , ;  Ak, Gk, Ck, and Hk are possible time-

varying, known matrices of appropriate dimension, x and y are, respectively, the
state space and observation space.  The basic random variables {x0, w0, .., v0, ...}
are all independent and Gaussian, with x N0 00~ ( , )� , w N Qk ~ ( , )0 ,
v N Rk ~ ( , )0 .  The covariances are all known.  The available information at time

k is z y y y yk k
k k� �

�

: ( , ,..., )1 0 .  The random variable xk, xk+1, and yk are jointly

Gaussian.  As derived in Chapter 4, the recursion scheme was obtained by Kal-
man filtering:

(2) x A x L y C A xk k k k k k k k k k k� � � � �
� � �1 1 1 1 1| | |[ ],

x L y0 0 0 0| ,�

� �k k k k k kI L C
� � � � �

� �1 1 1 1 1| | ,( )

� �k k k k k k
T

k k
TA A G QG

�
� �1| |

S I L C S0 0 0 0 0| ,( )� �
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This recursion specifies the transition function of the information state.  It is
known as the discrete Kalman filter.  The matrix L in the recursion is called the
Kalman gain matrix.  The following STELLA model uses this recursion scheme
to model the changes of the biodiversity and population of plant communities.

The STELLA Model

In this study, the STELLA model is built based on the recursion scheme (2).
Figure 2 is a STELLA map, which shows the four basic parts of our STELLA
model:  global variables, local variables, the Kalman filter, and the outputs.  A
variable is called global if it is determined by the community type and is inde-
pendent of the species type, such as the Shannon index, total number of species,
total population, total number of observations, error limit, natural input, and
human input (these are discussed in the following section).  A local variable var-
ies with the type of species.  Local variables include species abundance, species
tolerance to environmental changes, and model parameters.  The model of the
Kalman filter is based on species.  Although the structure of the model is the
same for all species, the inputs and outputs are different for different species.
The outputs include all the major results of the simulation both in table and
graphic format.

Figure 3 is a STELLA diagram that shows the structure of the estimation model
of the Kalman filter.  The parameters and components in the model are defined
in the recursion scheme (2).  This model simulates the changes of the population
of a single species.  A multispecies community needs multiple copies of this
model in which the structure is the same but the parameters are set differently.
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Global Variables
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Figure 2.  The STELLA map of flow structure.
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Figure 3.  The STELLA structure of the Kalman filter.
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Setting of the STELLA model

Global Variables

Number of observations:  is the number of repeated times of observation.

Error limit:  is the tolerance of inventory errors that include sampling and non-
sampling errors.

Human input:  is the quantified human activities, including the destruction and
improvement activities done to the community.

Natural input:  is scaled environmental variation and natural catastrophe.  The
growth of a plant population is determined not only by its intrinsic reproduction
and survival capabilities but also by its surrounding climatic, topographic, and
geologic conditions.  Some of these environmental factors have little variation
over time, such as topography and soil, while others, such as temperature and
precipitation, change daily.  Some of these changes are important to the popula-
tion growth, and some of them are not.  We choose those factors that are impor-
tant to the community and change over a relatively short period of time.  Catas-
trophes can be thought of as the extremes of environmental variation.  These are
events that affect either reproduction or survival.  Catastrophes include habitat
destruction, flood, fire, disease, drought, storm, etc.  We may be able to define the
impacts of these catastrophes on the community of interest by examining the
historical records of catastrophes and population changes of the community.

Total population:  is the sum of the populations of all species in the community.

Total number of species:  is the total number of species appearing in the commu-
nity during the simulation.

Shannon index:  is defined as �
�

� p pi i
i

S

log( )
1

, where S is the total number of spe-

cies and pi  is relative population of the i-th species.  The Shannon index is de-

termined by both the richness (number of species of the community) and the
evenness (relative abundance of each species).  Given the total number of spe-
cies, the Shannon index reaches its maximum when all species have the same
abundance.  That is, Max (H) = log( )S .  Comparing the Max (H) and the true

value of H, we know the level of the diversity of the community.

We also calculate the population sizes of the most abundant species and their
variances.  In most natural communities, only a few species contribute 80
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percent or more to the total population.  These abundant species usually
determine the quality and function the community reaches.

Local Variables

Model parameters:  model parameters A, G, Q, C, H, and R are defined in the
schema (20).  In our study, parameters G, C, and H are set to be 1.  A is the net
growth rate.  When a community is in a stable stage, parameter A should be 1.
Thus A is initialized to be 1.  Q is the system noise term.  It is usually unknown.
As we proved in Chapter 4, Q does not affect the trend of estimates.  Even when
Q is initialized large, it drops very fast as more and more data enter into the
model.  R is the combined inventory error, which is determined by the population
sized and the error limit.

Species tolerance:  the tolerance of a species is the capability of the species to re-
sist environmental changes.  It is one of the intrinsic characters of the species.
Different species have different sensitivities to changes in their environment.
Thus, the tolerance index is determined by our understanding of the species.

Observation:  the observation is a set of time-series data collected from the field.
The size of the data set affects the quality of the simulation results.  The more
data we have, the more actuate the results we obtain from the simulation.

Kalman filter

Stocks, Flows, Converters, and Connectors are the generic building blocks of the
STELLA language.  Stocks, flows, or converters represent variables and parame-
ters.  Connectors link related variables or parameters.  This section provides a
brief description of these building blocks, and shows how the blocks are used to
build the Kalman filter (2).  STELLA manual (STELLA II 1994) provides details
of modeling in STELLA.

STOCK

:  In our model, stocks act as buffers within the system of plant popula-
tions.  They build up or decline whenever their associated rates of inflow and
outflow are out of balance with one another.  This buffering property of stocks
leads to dynamic simulation of the system.  There are two stock variables in the
Kalman filter:  population and its variance.  The population is the optimal esti-
mate of the true population of a given species.  The variance is the minimized
variance of the population.  These two stock variables are calculated by the Kal-
man filter (2).
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FLOW

:  In STELLA, flows consist of a pipe (or conduit), flow regulator, and ar-
row.  Things flow through the conduit in the direction indicated by the arrow.
The specific volume of the flow is calculated by the algebraic expression in the
regulator.  In the Kalman filter, there are two types of flows:  flow-in and flow-
out.  A flow-in and flow-out connect each of the stock variables in our model.
When a new observation comes into the model, the regulator in the flow-in cal-
culates the new population size based on the Kalman filter, and adds the result
into the stock.  Meanwhile, the flow-out removes the old population from the
stock.  Therefore, the population size stored in the stock is updated as the recur-
sion scheme (2) shows.

CONVERTER

 :  Circles in STELLA represent converters; they are the containers for all
types of information or material quantities.  As their name implies, converters
transform inputs into outputs based on the expressions in the circles.  Unlike
stocks, converters do not accumulate flows and have no memory.  In our model,
converters represent all of the global and local variables.

Outputs

The outputs of the model include total population size of the community, total
number of species, the Shannon index, and the populations of the five most
abundant species of the community and their standard deviations.  These out-
puts are presented in table and graphic formats.
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6 A Case Study: White Sands Installation

White Sands Missile Range was selected as the case study.  The White Sands in-
stallation is located in the desert in New Mexico.  Although the species composi-
tion here is not complicated, White Sands has a wide range of land covers, from
pure sand with little or no vegetative cover, to highly dense plant communities.
A single model may not be able to model the whole installation.  Therefore, we
first classify the plots of White Sands into different plant community types based
on their species compositions.  Then, we simulate the population and diversity of
each type of plant community based on data collected from the field.

Classification of Plant Communities

A plant community is an interacting unit of all the populations of species within
a prescribed region.  Different communities have different species composition
and present different patterns.  A central goal of plant ecology and biology is to
understand and model the processes and mechanisms that cause the patterns we
see.  This is no easy task.  Any given habitat may contain from a few plant spe-
cies to hundreds of different species.  In a large area, especially a tropical or sub-
tropical area, species composition is usually very complicated and vegetation
patterns are complex.  No single model can produce a satisfactory description for
the population dynamics in all types of plant communities.  A model usually
works well within a certain type of community.  Therefore, to understand the
vegetation changes in a given area, the first task we have to accomplish is to
classify that community.

In most sampling designs, vegetation types or land cover types are identified
based on satellite imagery, soil types, and vegetation information.  Samples are
then proportionally assigned to the land cover categories classified from satellite
imagery.  For a variety of reasons, classifications based on satellite imagery do
not reflect the natural distribution of plants and land covers.  The preliminary
classification based on satellite imagery should be modified by observation in-
formation.

There are many different approaches to and kinds of community classification.
The two basic methods are the ecological classification framework and numerical
classification.  The ecological classification framework combines the physical and
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biological factors of a given region.  Usually, dominant species of a plant commu-
nity are used to represent the ecological function of the community.  Thus, a di-
rect method for ecological classification is to put samples into groups of domi-
nant-types according their species composition.  That is, samples with similar
major species are classified into the same group.  This method is direct and accu-
rate when all samples are dominated by a few species.  However, when the sam-
ple size is very large and species composition is very complicated, the direct
method may give a large number of dominant types.  If the number of dominant
types is limited, it is very hard, even for an experienced expert, to tell which
group a sample should go into.  Moreover, this ecological method is more or less
subjective.  Different people may have different classification schemes for the
same data set.

In the past three or four decades, there has been an increasing tendency to use
numerical methods.  This has largely been due to the greater objectivity of these
methods.  A common method is cluster analysis.  Clustering is a method of find-
ing groups in data.  But the direct use of species abundance data in clustering
causes the problem of putting samples with similar species composition into dif-
ferent groups.  For example, two samples (I and II) both have species A, B, C,
and D.  Sample I has the species abundance 100, 60, 40, and 10 of species A, B,
C, and D, respectively.  Sample II has the species abundance 60, 30, 20, and 5 of
species A, B, C, and D, respectively.  Although these two samples have similar
species composition they may be placed into different groups by cluster analysis
because the absolute difference of species composition between these two sam-
ples is large.

Instead of using the direct abundance, we standardize the abundance data by
quadrate in this study.  Then, we apply usual clustering methods to the stan-
dardized data.  This method overcomes the disadvantages of using direct abun-
dance because the abundance of species is standardized to a scale of unit one for
all samples.  The clustering programming is written in the SAS statistical analy-
sis program.  We use three different clustering methods:  average, centroid, and
Ward’s minimum variance, and choose the best clustering scheme after compar-
ing the clustering results obtained by these three methods.

Standardization of Data by Quadrat

There are many different approaches to standardizing data onto a scale of one.
We used quadratic standardization (scaling) in this study.  The reason for using
quadratic scaling is that this method of scaling puts appropriate weights on
abundant species.  Relative abundance, which is defined as the i-th species
abundance divided by the total population, treats all the species as having the
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same importance in the classification.  This is not what we expect in the classifi-
cation of a plant community.  In community classification, abundant species are
usually considered to be more important than other species.  On the contrary,
cubic or higher order scaling puts too much weight on the abundant species, and
other species may have little or no impact on the classification.

To understand quadratic scaling, we first define the length of a vector.  The
length of a vector is defined as the square root of the sum of the squares of all its
elements.  That is,

(1) L Qi= 2

where Qi  is the i-th element of vector Q.

Let Q be the abundance vector of a community.  Qi  is the abundance of i-th spe-

cies.  Then, the standardized abundance of the i-th species, which is also called
the importance index of the i-th species, is defined by:

(2) Q Qi L i
' = 1 2

2

Two properties of the importance index are:  (1) Q' is a unit vector; that is, Qi
'

ranges from 0 to 1, and Qi
' = 1; (2) Qi

' is determined by the relative abundance

rather than absolute abundance.

Clustering Method

The SAS clustering procedure, CLUSTER, is used to find groups of observations
with coordinate data (species importance index).  To obtain a better clustering
result, we use three clustering methods:  average linkage, centroid method, and
Ward’s minimum-variance method.

The following notation is used, with lowercase symbols generally pertaining to
observations and uppercase symbols to clusters:

n = number of samples (observations);

v = number of variables;

G = number of clusters at any given level of the hierarchy;

xk = i-th observation;

CK = K-th cluster;

Nk = number of observations in CK;

x k  = mean vector for CK;
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x  = Euclidean length of the vector x;

T = x xi
i

n

−
=1

2

;

Wk = x xi ki C
k

−∈

2
;

pG = wJ ;

B W W WKL M K L= − −  if C C CM k L= ∪ ;

D(x, y) = distance between vectors x and y;

DKL = distance between clusters CK and CL.

The distance between two clusters can be defined either directly or by combina-
torial.  That is, by an equation for updating a distance matrix when two clusters
are joined.  In all combinatorial formulas below, it is assumed that clusters CK

and CL are merged to form CM, and the formula gives the distance between the
new cluster CM and any other cluster CJ.

Average Linkage

In the average linkage, the distance between two clusters is defined by:

(3) D d x x N NKL i j K Lj Ci C
LK

= ∈∈ ( , ) / ( ).

if d(x,y) = x y− 2
 then:

(4) D x x W N W NKL K L K K L L= − + +
2

/ / .

The combination formula is:

(5) D N D N D NJM k JK L JL M= +( ) / .

In the average linkage, the distance between two clusters is the average distance
between pairs of observations, one in each cluster.  Average linkage tends to join
clusters with small variances but is slightly biased toward producing clusters
with the same variance.

Centroid Method

In the centroid method, the distance between two clusters is defined by:

(6)
D x xKL K L= −

2

.
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If d(x,y) = x y− 2
 then the combination formula is:

(7) D N D N D N N N D NJM k JK L JL M K L KL M= + −( ) / / .2

In the centroid method the distance between two clusters is defined as the
Euclidean distance between their centroid or means.  The centroid method is
more robust to outliers than most other hierarchical methods.

Ward’s Minimum-variance Method

In Ward’s minimum-variance method, the distance between two clusters is the
analysis of variance (ANOVA) sum of squares between two clusters added up
over all the variables.  At each generation, the within-cluster sum of squares is
minimized over all partitions obtainable by merging two clusters from the previ-
ous generation.  d(x, y), DKL and the combinatorial formulas are, respectively, de-
fined as:

(8) d(x, y) = ||x-y||2/2

(9) DKL = ||xK

_

- xL

_

||2 / (1/NK + 1/NL)

(10) DJM = ((NJ + NK)DJK + (NJ + NL)DJL - NJDKL) / (NJ + NM)

Classification Results

The clustering results were obtained by the three clustering methods:  average
linkage, centroid method, and Ward’s minimum-variance method.  Tables 1 and
2 summarize the results of cluster analysis for years 1989 and 1992, respectively.
From Tables 1 and 2 we can see Ward’s minimum variance method gives the best
match of plots among all the three methods and a stable classification scheme
between years 1989 and 1992.  Thus we choose Ward’s clustering scheme as the
frame scheme and adjusted it by the clustering results from average linkage and
centroid method.  We suggest 18 vegetation types for White Sands (17 clusters
plus 1 type of bare soil).  The vegetation types and their major species are listed
in Table 3.
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Table 1.  Comparison of cluster analysis results for 1989.

Cluster Average Linkage Centroid Hierarchical Ward’s Minimum Variance

1 31,  33,  35,  36,  147,  150,  175 31,  33,  35,  36,  147,  150,  175 31,  33,  35,  36,  147,  150,  175

2 1,  2,  10,  11,  12,  13,  14,  24,
29,  30,  37,  41,  42,  54,  59,  73,
80,  82,  83,  84,  85,  86,  88,  89,
90,  92,  93,  95,  96,  110,  113,
117,  118,  119,  120,  121,  122,
123,  125,  132,  133,  134,  151,
156,  157,  158,  159,  161,  166,
180,  181,  189,  190,  191,  196

1,  2,  10,  11,  12,  13,  14,  24,
29,  30,  41,  42,  54,  59,  73,  82,
83,  84,  85,  86,  88,  89,  90,  92,
93,  110,  113,  117,  118,  119,
120,  121,  125,  132,  133,  151,
156,  157,  161,  166,  180,  181,
189,  191

1,  10,  12,  14,  24,  29,  30,  41,
42,  54,  59,  82,  84,  85,  86,  88,
89,  90,  92,  93,  113,  117,  118,
119,  120,  121,  125,  132,  133,
156,  157,  161,  166,  189,  191

3 19,  20,  26,  53,  57,  58,  68,  69,
91,  109,  116,  129,  131,  162,
168,  176,  200

53,  57,  68,  69,  91,  109,  129 53,  57,  68,  69,  91,  109,  129

4 3,  4,  23,  25,  27,  38,  39,  56,
60,  61,  62,  114,  115,  127,  152,
155,  172,  195

3,  4,  23,  25,  27,  38,  39,  56,
60,  62,  114,  115,  127,  152,
155,  172,  195

3,  4,  23,  25,  27,  38,  39,  56,
60,  62,  114,  115,  127,  152,
155,  172,  195

5 46,  49,  100,  101,  102,  112,
177,  197

46,  49,  100,  101,  102,  112,
177,  197

46,  49,  100,  101,  102,  112,
177,  197

6 6,  7,  8,  21,  22,  51,  52,  64,
128,  130,  138,  139,  144,  160,
164,  165,  167

7,  21,  22,  64,  138,  139,  144,
160,  164,  165,  167

21,  22,  64,  138,  139,  160,  164,
167

7 70,  111,  142,  145,  171,  173,
199

70,  111,  142,  145,  171,  173,
199

70,  111,  142,  145,  171,  173,
199

8 15,  16,  94,  97,  124,  135,  178 6,  8,  15,  16,  19,  20,  26,  37,
47,  50,  51,  52,  58,  61,  66,  67,
71,  72,  75,  77,  78,  79,  80,  87,
94,  95,  96,  97,  99,  106,  116,
122,  123,  124,  128,  130,  131,
134,  135,  137,  158,  159,  162,
163,  168,  176,  178,  182,  184,
190,  196,  198,  200

19,  20,  26,  58,  116,  131,  162,
176,  200

9 5,  9,  65,  146,  153,  154,  193,
194

5,  9,  65,  146,  153,  154 2,  11,  13,  37,  73,  83,  110,  122,
123,  134,  151,  158,  180,  181,
190

10 40,  48,  79,  98,  103,  104,  108,
183

40,  48,  98,  103,  104,  108,  183 40,  48,  79,  80,  95,  96,  98,  103,
104,  108,  168,  183

11 105,  107 105,  107 5,  9,  65,  146,  153,  154,  193,
194

12 28,  43,  126 193,  194 6,  7,  8,  51,  52,  61,  128,  130,
144,  159,  165,  196

13 47,  50,  66,  67,  71,  72,  75,  77,
78,  87,  99,  106,  137,  163,  182,
184,  198

28,  43,  126 50,  63,  66,  67,  71,  72,  74,  75,
76,  77,  78,  136,  137,  163,  182,
184

14 17,  18,  81 17,  18,  81 105,  107

15 74 74 28,  43,  126

16 63 63 15,  16,  94,  97,  124,  135,  178

17 76 76 17,  18,  81

18 136 136 47,  87,  99,  106,  198

19 140 140 140

20 169 169 169
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Table 2.  Comparison of cluster analysis results for 1992.

Cluster Average Linkage Centroid Hierarchical Ward’s Minimum Variance

1 31,  33,  36,  147,  148,  175 31,  33,  36,  147,  148,  175 31,  33,  36,  147,  148,  175

2 1,  10,  11,  12,  13,  14,  24,  29,
30,  41,  42,  54,  59,  73,  82,  88,
89,  90,  92,  93,  113,  117,  118,
119,  120,  121,  123,  125,  132,
133,  156,  157,  158,  161,  166,
180,  181,  189,  191

1,  2,  10,  11,  12,  13,  14,  24,
29,  30,  41,  42,  54,  59,  73,  82,
88,  89,  90,  92,  93,  113,  117,
118,  119,  120,  121,  123,  125,
132,  133,  156,  157,  158,  161,
166,  180,  181,  189,  191

1,  10,  11,  12,  13,  14,  24,  29,
30,  41,  42,  54,  59,  73,  82,  88,
89,  90,  92,  93,  113,  117,  118,
119,  120,  121,  123,  125,  132,
133,  156,  157,  158,  161,  166,
180,  181,  189,  191

3 3,  4,  19,  20,  23,  25,  26,  27,
38,  39,  56,  57,  58,  60,  62,  68,
69,  91,  109,  114,  115,  116,
127,  129,  130,  131,  152,  162,
168,  172,  195,  200

3,  4,  23,  27,  38,  39,  60,  62,
127,  152,  172,  195

3,  4,  23,  27,  38,  39,  60,  62,
127,  152,  172,  195

4 70,  77,  111,  142,  145,  151,
171,  173,  199

70,  77,  111,  142,  145,  151,
171,  173,  199

70,  77,  111,  142,  145,  151,
171,  173,  199

5 46,  49,  100,  101,  102,  110,
112,  177,  197

46,  49,  100,  101,  102,  110,
112,  177,  197

46,  49,  100,  101,  102,  110,
112,  177,  197

6 6,  7,  17,  21,  22,  35,  47,

50,  51,  61,  64,  66,  67,
71,  72,  74,  75,  78,  99,
103,  106,  128,  137,  138,

139,  140,  141,  144,  159,
160,  163,  164,  165,  167,
182,  183,  184,  196,  198

6,  7,  15,  16,  17,  19,  20,  21,
22,  25,  26,  37,  40,  48,  50,  51,
56,  57,  58,  64,  66,  67,  68,  69,
71,  72,  74,  75,  78,  79,  80,  91,
94,  95,  96,  97,  98,  104,  105,
108,  109,  114,  115,  116,  122,
124,  128,  129,  130,  131,  134,
135,  137,  138,  139,  140,  141,
144,  159,  160,  162,  163,  164,
165,  167,  168,  176,  178,  182,
183,  184,  190,  196,  200

6,  7,  21,  22,  51,  64,  128,

138,  139,  159,  160,  164,
165,  167,  184,  196

7 2,  15,  16,  37,  40,  48,  79,  80,
94,  95,  96,  97,  98,  104,  105,
108,  122,  124,  134,  135,  176,
178,  190

35,  47,  61,  99,  103,  106,  198 15,  16,  37,  94,  95,  96,  97,  122,
124,  134,  135,  176,  178,  190

8 5,  65,  146,  153 5,  65,  146,  153 26,  57,  58,  68,  69,  91,  109,
129,  162,  168,  200

9 28,  43,  126 28,  43,  126 19,  20,  25,  56,  114,  115,  116,
130,  131

10 193,  194 193,  194 2,  40,  48,  79,  80,  98,  104,  105,
108

11 63 63 5,  65,  146,  153

12 107 107 28,  43,  126

13 76 76 35,  47,  61,  99,  103,  106,  183,
198

14 18 18 193,  194

15 81 81 50,  63,  66,  67,  72,  74,  75,  76,
78,  107,  136,  137,  140,  141,
163,  182

16 136 136 17,  18,  71,  81,  144

17 8 8 8

18 154 154 154

19 169 169 169

20 52 52  52
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Table 3. Vegetation types identified at White Sands Missile Range.

Types No. of plots Plot ID Major species

1 3 36,  147,  175 ALOC2, PSAR, ATCA2

2 35 1,  10,  12,  14,  24,  29,  30,  41,  42,  54,  59,
82,  84,  85,  86,  88,  89,  90,  92,  93,  113,  117,
118,  119,  121,  125,  132,  133,  156,  157,  161,
166,  189,  191

ATCA2

3 7 53,  57,  68,  69,  91,  109,  129 FLCE

4 17 3,  4,  23,  25,  27,  38,  39,  56,  60,  62,  114,
115,  127,  152,  155,  172,  195

LATR2

5 8 46,  49,  100,  101,  102,  112,  177,  197 ARFI2, EPTO

6 8 21,  22,  64,  138,  139,  160,  164,  167 PAIN2, LATR2, VIST, DAFO

7 7 70,  111,  142,  145,  171,  173,  199 DAFO, PAIN2, LATR2

8 9 19,  20,  26,  58,  116,  131,  162,  176,  200 FLCE, LATR2

9 14 2,  11,  13,  37,  73,  83,  122,  123,  134,  151,
158,  180,  181,  190

ATCA2, LYBE

10 6 15,  94,  97,  124,  135,  178 LYBE, ATCA2

11 8 5,  9,  65,  146,  153,  154,  193,  194 VIST, DAFO, ACCO2, PAIN2

12 12 6,  7,  8,  51,  52,  61,  128,  130,  144,  159,  165,
196

PAIN2, LATR2, DAFO

13 12 40,  48,  79,  80,  95,  96,  98,  103,  104,  108,
168,  183

EPTO, ATCA2

14 18 50,  63,  66,  67,  71,  74,  75,  76,  77,  78,  105,
107,  136,  137,  140,  163,  182,  184

DAWH2, PAIN2, YUBA

15 3 17,  18,  81 OPVI, ACGR

16 4 47,  87,  106,  198 YUEL, POIN3

17 1 169 DAFO, PAIN2, FLCE

18 27 16, 28, 31,  33,  35, 43, 72, 99, 110, 120, 126,
150

32, 34, 44, 45, 55, 143, 148, 149, 174, 179, 185,
186, 187, 188, 192

Bare land
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Simulation Results

The STELLA model as described in Chapter 5 was used to model the population
and diversity of the 17 plant community types.  The data used for the simulation
were from four years:  1989, 1990, 1991, and 1992.  Figures 4 through 20 illus-
trate results of the simulation for the different plant communities.
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Figure 4.  Simulation results for plant community type 1.
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Figure 5.  Simulation results for plant community type 2.
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Figure 6.  Simulation results for plant community type 3.
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Figure 7.  Simulation results for plant community type 4.
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Figure 8.  Simulation results for plant community type 5.
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Figure 9.  Simulation results for plant community type 6.
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Figure 10.  Simulation results for plant community type 7.
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Figure 11.  Simulation results for plant community type 8.
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Figure 12.  Simulation results for plant community type 9.
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Figure 13.  Simulation results for plant community type 10.
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Figure 14.  Simulation results for plant community type 11.
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Figure 15.  Simulation results for plant community type 12.
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Figure 16.  Simulation results for plant community type 13.
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Figure 17.  Simulation results for plant community type 14.
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Figure 18.  Simulation results for plant community type 15.
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Figure 19.  Simulation results for plant community type 16.
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Figure 20.  Simulation results for plant community type 17.



CERL TR 00-5 80

7 Summary

This report is the culmination of a project that was designed to develop and test
a new methodology to model changes in plant diversity.  Using standard data
from the U.S. Army’s LCTA program at White Sands Missile Range, New Mex-
ico, stochastic models of plant diversity were created to simulate the dynamics of
the population growth in a number of plant communities on the installation.

This project resulted in the development of a new model in which we demon-
strated different methods to solve a variety of stochastic differential equations.
We illustrated how to incorporate both demographic noise and environmental
noise into a single model containing the joint effects of demographic and envi-
ronmental stochasticity.  This new model contains two main components:  deter-
ministic process and stochastic process.  We first introduced a dynamics model of
population growth.  This model derives birth and death rates as they relate to
population growth from the relationships among plants.  It also derives these
rates from the relationship between plants and the environment.  This model
serves as the deterministic part of the stochastic model and controls the biologi-
cal dynamics of the plant communities.  The second component of the model
simulates the biological and ecological fluctuations.  In the new model, the sto-
chastic process is simulated with the birth and death process.  This process best
describes the demographic stochasticity because it depicts population dynamics
with biologically accurate, interpretable birth and death rates and is applicable
to populations of varying sizes.

During the testing phase of the project, we needed to have clearly defined plant
communities in order to test the model with White Sands LCTA data.  We used
Ward’s minimum variance method of cluster analysis because it yielded the best
match of plots out of the three methods of cluster analysis used to characterize
individual plant communities on the White Sands installation.

This diversity model complements other models that use LCTA data to deter-
mine plant population levels.  Plant population models are useful tools in that
they enable natural resource managers to transcend current identification
strategies and can help determine future training levels that will allow the
maximum level of training to occur in areas with minimal impact on overall spe-
cies diversity.  Although this particular model is only applicable at the White
Sands installation, this new model can handle a variable number of species and
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species abundance.  This capability enables it to be used to calculate any kind of
diversity indices.  Because both the dynamic changes and stochastic fluctuations
are included in the stochastic dynamics model, re-parameterizing the model
gives it the potential for extensive use in natural resource management and en-
vironmental monitoring.  Future applications of these stochastic dynamics mod-
els include:  providing standard diversity measures; monitoring the development
of plant communities in terms of species diversity and structure diversity; test-
ing the significance of the influence of human activities on plant communities;
and estimating rehabilitation time for a disturbed plant community, thereby
helping the Army integrate training and natural resource management.
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